Study on Nanofluid Boundary Layer Flow Over A Stretching Surface by Spectral Collocation Method
DOI:
https://doi.org/10.18311/jmmf/2023/36259Keywords:
Brownian Motion, Fluid Velocity, Heat Transfer Rate, Nano Fluid, ThermophoresisAbstract
The method of Spectral collocation is used to analyze the flowing Nano fluid layer in contact with a stretching surface for comprehensive information and thus to have its utility in industrial activities like the production of glass fibers, petroleum refining, hot rolling of metals, metal spinning etc. The spectral collocation model incorporates thermophoresis and Brownian motion phenomena to describe the fluid flow, fluid concentration and temperature profiles. A similarity solution has been presented for the governing equations of fluid momentum, concentration and temperature. The computational results are the function of Prandtl number (Pr), Lewis number (Le), thermophoresis and Brownian motion phenomena. The engineering quantities like thermophoresis parameter (Nt), Brownian motion parameter (Nb), buoyancy-ratio parameter (Nr) and reduced Nusselt number (Nu) and reduced Sherwood number (Sh) have tabulated corresponding to Prandtl number (Pr) and Lewis number (Le). The results of the current study thrown light on fluid velocity and heat transfer rates in the boundary layer. The numerous industrial products and manufacturing processes of superior quality can be exercised with the current studies.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Takhar HS, Chamkha AJ, Nath G. Unsteady three- dimensional MHD boundary-layer flow due to the impulsive motion of a stretching surface. Acta Mech. 2001; 146:59–71. DOI: https://doi.org/10.1007/BF01178795
Vleggaar J. Laminar boundary layer behaviour on continuous accelerating surface. Chem Eng Sci. 1977; 32:1517–1525. DOI: https://doi.org/10.1016/0009-2509(77)80249-2
Crane LG. Flow past a stretching plate. J appl math phys. 1970; 21:645–647. DOI: https://doi.org/10.1007/BF01587695
Andersson HI, Bech KH, Dandapat BS. Magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Int. J. Non-Linear Mech. 1992; 27(6):929-936. DOI: https://doi.org/10.1016/0020-7462(92)90045-9
Magyari E, Keller B. Exact solutions for self-similar boundary- layer flow induced by permeable stretching walls. Eur J Mech B Fluids. 2000; 19:109–122. DOI: https://doi.org/10.1016/S0997-7546(00)00104-7
Sparrow EM, Abraham JP. Universal solutions for the stream wise variation of the temperature of a moving sheet in the presence of a moving fluid. Int J Heat Mass Transf. 2005; 48:3047–3056. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.028
Kakac S, Pramuanjaroenkij A. Review of convective heat transfer enhancement with nano fluids. Int J Heat Mass Transf. 2009; 52:3187–3196. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2009.02.006
Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. IMECE. 1995; 66:99–105.
Choi SUS, Zhang ZG, Yu W, Lockwood FE, Grulke EA. Anomalously thermal conductivity enhancement in nanotube suspensions. Appl Phys Lett. 2001; 79:2252– 2254. DOI: https://doi.org/10.1063/1.1408272
Khanafer K, Vafai K, Lighthouse M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nano fluids. Int J Heat Mass Transf. 2003; 46:3639–3653. DOI: https://doi.org/10.1016/S0017-9310(03)00156-X
Kang HU, Kim SH, Oh JM. Estimation of thermal conductivity of nano fluid using experimental effective particle volume. Exp Heat Transf. 2006; 19:181–191. DOI: https://doi.org/10.1080/08916150600619281
Maiga SEB, Palm SJ, Nguyen CT, Roy G, Galanis N. Heat transfer enhancement by using nano fluids in forced convection flow. Int J Heat Fluid Flow. 2005; 26:530–546. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2005.02.004
Tzou DY. Thermal instability of nano fluids in natural convection. Int J Heat Mass Transf. 2008; 51:2967–2979. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.09.014
Hakan FO, Abunanda E. Numerical study of natural convection in partially heated rectangular enclosures filled with nano fluids. Int J Heat Fluid Flow. 2008; 29:1326–1336. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2008.04.009
Buongiorno J. Convective transport in nano fluids. J Heat Transfer. 2006; 128:240–250. DOI: https://doi.org/10.1115/1.2150834
Kuznetsov AV, Nield DA. Natural convective boundary-layer flow of a nano fluid past a vertical plate. Int J Thermal Sci. 2010; 49:243-247. DOI: https://doi.org/10.1016/j.ijthermalsci.2009.07.015
Kuznetsov AV, Nield DA. The Cheng-Minkowycz problem for natural convective boundary layer flow in a porous medium saturated by a Nano fluid. Int J Heat Mass Transf. 2013; 65:682-685. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.054
Cheng P, Minkowycz WJ. Free convection about a vertical flat plate embedded in a porous medium with application to heat transfer from a dike. J Geophys Res.1977; 82:2040–2044. DOI: https://doi.org/10.1029/JB082i014p02040
Khan WA, Pop I. Boundary-layer flow of a nano fluid past a stretching sheet. Int J Heat Mass Transf. 2010; 53:2477–2483. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032
Ghasemi SE, Mohsenian S, Gouran S, Zolfagharian A. A novel spectral relaxation approach for Nano fluid flow past a stretching surface in presence of magnetic field and nonlinear radiation. Results Phys. 2022; 32:105141. DOI: https://doi.org/10.1016/j.rinp.2021.105141
Samuel FM, Motsa SS. A highly accurate trivariate spectral collocation method of solution for two-dimensional nonlinear initial boundary value problems. Appl Math Comput. 2019; 360:221–235. DOI: https://doi.org/10.1016/j.amc.2019.04.082
Raj N, Mondal S. Spectral methods to solve nonlinear problems. Partial Differential Equations in Applied
Mathematics. 2021: 4:100043. DOI: https://doi.org/10.1016/j.padiff.2021.100043
Seyed MM, Mohammadreza NR, Mohammad Y, Saeed D, Pop I, Mikhail AS. Dual solutions for Casson hybrid nanofluid flow due to a stretching/shrinking sheet: A new combination of theoretical and experimental mod- els. Chin J Phys. 2021; 71:574-588. DOI: https://doi.org/10.1016/j.cjph.2021.04.004
Srinivasalu T, Shankar Goud B. Effect of inclined magnetic field on flow, heat and mass transfer of Williamson nanofluid over a stretching sheet. Case Stud Therm Eng. 2021; 23:100819. DOI: https://doi.org/10.1016/j.csite.2020.100819
Vishwanath BA, Maheshkumar N, Wakif A. Haar wavelet scrutinization of heat and mass transfer features during the convective boundary layer flow of a nano- fluid moving over a nonlinearly stretching sheet. Partial Differential Equation in Applied Mathematics. 2021; 4:100192. DOI: https://doi.org/10.1016/j.padiff.2021.100192
Kavya S, Nagendramma V. Opposing and assisting flow of a hybrid Newtonian /non-Newtonian nanofluid past a stretching cylinder. JMMF. 2023; 71(8):1045-1057.
Musharraf SM, Srinivas G. Performance evaluation of hypersonic flow past blunt bodies with Aerospikes using numerical techniques. JMMF. 2023; 71(2):186-195.