Mineral-Associated Medicinal Plants: Uncovering Their Anti-inflammatory Potential Through Comprehensive Exploration of Bioactive Compounds And Pharmacological Activities

Jump To References Section

Authors

  • BVDU Yashwantrao Mohite College of Arts, Science and Commerce, Kothrude, Pune – 411038, Maharashtra ,IN
  • BVDU College of Engineering, Pune - 411043, Maharashtra ,IN
  • BVDU Yashwantrao Mohite College of Arts, Science and Commerce, Kothrude, Pune – 411038, Maharashtra ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/36273

Keywords:

Anti-inflammatory, Bioactive Compounds, Defense Mechanism, Mineral-associated Plants, Natural Remedies, Phytochemicals

Abstract

In recent years, there has been a growing interest in harnessing the potential of bioactive compounds sourced from specific wild plants with inherent natural anti-inflammatory properties. Inflammation is a complex physiological response crucial for defense against adverse stimuli. However, prolonged inflammation can give rise to a myriad of health issues, particularly when influenced by factors related to mineral exposure and processing. This review aims to provide an overview of the current status of knowledge regarding the anti-inflammatory plant-based drugs which have been derived from green tea, licorice, devil's claw, willow bark, chamomile, Salvia officinalis and Piper ovatum etc. Bioactive compounds such as catechins, glycyrrhizin, harpagoside, salicin, chamazulene, Lactones and alkaloids which are referred as secondary plant metabolites obtaining the pharmacological effects in human beings and animals. It has long been identified by the authors of various classical texts of Ayurveda and their properties, indications to inhibit the production of pro-inflammatory cytokines and enzymes which helps to modulate various signaling pathways involved in inflammation. This study delves into the assessment of the anti- inflammatory properties of select wild plants while taking into consideration their potential interactions with mineral and mineral-associated pollutants. Safety and potential side effects are discussed in the context of metal exposure scenarios. Additionally, it underscores the necessity for continued research to elucidate the action mechanisms of these plant-derived compounds, further unlocking their therapeutic potential and efficacy in addressing inflammation heightened by mineral- related factors.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-11-30

How to Cite

Thorat, J. C., Dhamal, S. V., & Dudheinamdar, P. V. (2023). Mineral-Associated Medicinal Plants: Uncovering Their Anti-inflammatory Potential Through Comprehensive Exploration of Bioactive Compounds And Pharmacological Activities. Journal of Mines, Metals and Fuels, 71(11), 2095–2109. https://doi.org/10.18311/jmmf/2023/36273

 

References

Amin MU, Khattak MB, Khan MA, et al., The role of flavonoids in the treatment of inflammatory disorders. Biomedicine and Pharmacotherapy. 2021; 138:111525.

Chen L, Deng H, Cui H, et al., Inflammatory responses and inflammation-associated diseases in organs. 2018. Doi: 10.18632/oncotarget.23208

Kayabas M. et al., Protective effect of hydrogen-rich saline on spinal cord damage in rats. 2023; 16(4):527. https:// doi.org/10.3390/ph16040527 4. Tu Y. et al. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nature Medicine. 2011; 17(10):1217-1220. DOI: https://doi.org/10.1038/nm.2471

Kholghi G, et al. St. John’s wort (Hypericum perforatum) and depression: What happens to the neurotrans- mitter systems? Naunyn-Schmiedeberg’s Archives of Pharmacology. 2022; 395(6):629-642. https://doi. org/10.1007/s00210-022-02229-z DOI: https://doi.org/10.1007/s00210-022-02229-z

Hou J, et al. Ginkgo biloba extracts improve choroidal circulation leading to suppression of myopia in mice. Scientific Reports. 2023; 13(1):3772. https://doi. org/10.1038/s41598-023-30908-1 DOI: https://doi.org/10.1038/s41598-023-30908-1

Naveed R, Hussain I, Tawab A, et al. A review on biological, nutraceutical and clinical aspects of French maritime pine bark extract. Journal of Ethnopharmacology. 2016; 190:224-236. doi: 10.1016/j.jep.2016.06.045 DOI: https://doi.org/10.1016/j.jep.2016.06.045

Mendes, et al. Tannins and flavonoids from plants used in the treatment of gastrointestinal diseases as anti-inflammatory agents. Molecules. 2020; 25(15):3533.

Kim YJ, et al. Anti-inflammatory effects of phenolic compounds isolated from the bark of Cinnamomum Cassia. Molecules. 2018; 23(11):2927.

Ciaunica A, Shmeleva EV, Levin M. The brain is not mental! coupling neuronal and immune cellular processing in human organisms. Front Integr Neurosci. 2023 May 17; 17:1057622. doi: 10.3389/fnint.2023.1057622. eCol- lection 2023. DOI: https://doi.org/10.3389/fnint.2023.1057622

Hou K, Wu ZX, Chen XY, et al. Signal transduct target ther. microbiota in health and diseases. 2022 Apr 23; 7(1):135. doi: 10.1038/s41392-022-00974-4. DOI: https://doi.org/10.1038/s41392-022-00974-4

Diab A, Dastmalchi LN, Gulati M, et al., A heart-healthy diet for cardiovascular disease prevention: where are we now? Vasc Health Risk Manag. 2023 Apr; 21; 19:237- 253. doi: 10.2147/VHRM.S379874. eCollection 2023. DOI: https://doi.org/10.2147/VHRM.S379874

Alamil JMR, Paudel KR, Chan Y, et al., Rediscovering the therapeutic potential of agarwood in the management of chronic inflammatory diseases. Molecules. 2022 May; 9; 27(9):3038. doi: 10.3390/molecules27093038. DOI: https://doi.org/10.3390/molecules27093038

Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives. 2001; 109(Suppl 1):69-75. doi:10.1289/ehp.01109s169. DOI: https://doi.org/10.1289/ehp.01109s169

Prasanth MI, Sivamaruthi BS, Chaiyasut C, Tencomnao T. A review of the role of green tea (Camellia sinensis) in antiphotoaging, stress resistance, neuroprotection, and autophagy. Nutrients. 2019; 11(2):474. https://doi. org/10.3390/nu11020474 DOI: https://doi.org/10.3390/nu11020474

Pastorino G, Cornara L, Soares S, Rodrigues F, Oliveira MBP. Liquorice (Glycyrrhiza glabra): A phytochemical and pharmacological review. Phytotherapy Research. 2018; 32(12):2323–2339. https://doi.org/10.1002/ ptr.6178. DOI: https://doi.org/10.1002/ptr.6178

Brendler T. From bush medicine to modern phyto- pharmaceutical: a bibliographic review of Devil’s claw (Harpagophytum spp.). Pharmaceuticals. 2021; 14(8):726. https://doi.org/10.3390/ph14080726

Warmiński K, Stolarski M, Gil L and Krzyżaniak M. Willow bark and wood as a source of bioactive compounds and bioenergy feedstock. Industrial Crops and Products. 2021; 171:113976. https://doi.org/10.1016/j. indcrop.2021.113976 DOI: https://doi.org/10.1016/j.indcrop.2021.113976

Singh, O, Khanam Z, Misra N, Srivastava M. Chamomile (Matricaria chamomilla L.): An overview. Pharmacognosy Reviews. 2011; 5(9):82. https://doi. org/10.4103/0973-7847.79103 DOI: https://doi.org/10.4103/0973-7847.79103

Khedher MRB, Khedher SB, Chaieb I, Tounsi S, Hammami M. Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. PubMed, 2017; 16:160–173. https://doi.org/10.17179/ excli2016-832

Silva DR, Endo EH, Filho BP, et al., Chemical composition and antimicrobial properties of Piper ovatum Vahl. Molecules. 2009; 14(3):1171–1182. https://doi. org/10.3390/molecules14031171 DOI: https://doi.org/10.3390/molecules14031171

Samtiya M, Aluko RE, Dhewa T, Moreno-Rojas JM. Potential health benefits of plant food-derived bioactive components: an overview. Foods. 2021; 10(4):839. https://doi.org/10.3390/foods10040839 DOI: https://doi.org/10.3390/foods10040839

Liu RH. Dietary bioactive compounds and their health implications. Journal of Food Science. 2013; 78(s1):A18– A25. https://doi.org/10.1111/1750-3841.12101 DOI: https://doi.org/10.1111/1750-3841.12101

Chacko SM, et al., Beneficial effects of green tea: a literature review. Chinese Medicine. 2010; 5(1):13. doi: 10.1186/1749-8546-5-13. DOI: https://doi.org/10.1186/1749-8546-5-13

Cabrera C, Artacho R, Giménez R. Beneficial effects of green tea—a review. Journal of the American 2106 Vol 71 (11) | November 2023 | http://www.informaticsjournals.com/index.php/jmmf Journal of Mines, Metals and Fuels College of Nutrition. 2006; 25(2):79-99. doi: 10.1080/07315724.2006.10719518. DOI: https://doi.org/10.1080/07315724.2006.10719518

Bhattacharya S, Rana T. In vitro and in vivo evaluation of green tea extract against the inflammation associated with cardiovascular disease. Journal of Functional Foods. 2020; 73:104151. doi: 10.1016/j.jff.2020.104151. DOI: https://doi.org/10.1016/j.jff.2020.104151

Kim H, et al., Epigallocatechin-3-Gallate (EGCG) sup- presses lipopolysaccharide-induced Toll-Like Receptor 4 (TLR4) Activity via 67-kDa Laminin Receptor (67LR) in Human Gingival Fibroblasts. Molecules. 2018; 23(5):1045.

Tian F, et al., Epigallocatechin-3-gallate (EGCG) attenuates high glucose-induced insulin signal defects in human umbilical vein endothelial cells. Journal of Functional Foods. 2018; 47:234-242.

Nam D, et al., Green tea catechins suppress NO-induced iNOS expression via a p38 MAPK-dependent pathway in human dental pulp cells. Archives of Oral Biology. 2018; 85:62-68.

Feng R, et al., Epigallocatechingallate inhibits the expression of cyclooxygenase-2 in peripheral blood mononuclear cells of patients with cervical cancer. Oncology Letters. 2018; 16(3):2923-2928.

Khan N, Mukhtar H. Tea and health: studies in humans. Current Pharmaceutical Design. 2018; 24(19):2141- 2147.

Hosseinzadeh H, Nassiri-Asl M. Pharmacological effects of Glycyrrhiza spp. and its bioactive constituents: update and review. Phytother Res. 2015; 29(12):1868-1886. doi: 10.1002/ptr.5487. DOI: https://doi.org/10.1002/ptr.5487

Chen W, Liu Y, Li Y, et al., Traditional uses, phytochemistry, pharmacology, pharmacokinetics and toxicology of Glycyrrhizaglabra L.: a review. J Ethnopharmacol. 2021; 267:113546. doi: 10.1016/j.jep.2020.113546. DOI: https://doi.org/10.1016/j.jep.2020.113546

Zhang X, Wang L, Peng Y, et al., Glycyrrhizin, a potential drug candidate, inhibits inflammation-mediated colorectal carcinogenesis and chemoresistance. Cancer Cell Int. 2019; 19:324. doi: 10.1186/s12935-019-1015-7. DOI: https://doi.org/10.1186/s12935-019-1015-7

Kim SJ, Kim SY, Kim JK, et al., Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-κB-dependent iNOS and proinflammatory cytokines production. Br J Pharmacol. 2018; 154(1):165-173. doi: 10.1038/bjp.2008.65. DOI: https://doi.org/10.1038/bjp.2008.79

Li W, Li Y, Li J, et al., Hypertension and related cardiovascular disease burden in China. Ann Transl Med. 2019; 7(9):192. Doi: 10.21037/atm.2019.03.56. DOI: https://doi.org/10.21037/atm.2019.03.56

Tavakkoli-Kakhki M, Motavasselian M, Talasaz AH, et al. Iran J Basic Med Sci. 2018; 21(2):91-99. doi: 10.22038/ ijbms.2018.23148.5853.

Alkherat AM, Alkhalidi DK. Assessment of knowledge and counseling practice of warfarin among pharmacists in UAE: A cross-sectional study. Pharm Pract (Granada), 2022; 20(4):2741. https://doi. org/10.18549/PharmPract.2022.4.2741 DOI: https://doi.org/10.18549/PharmPract.2022.4.2741

Wahab S, et al., Glycyrrhizaglabra (Licorice): a comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants (Basel). 2021; 10(12):2751. https://doi.org/10.3390/ plants10122751 DOI: https://doi.org/10.3390/plants10122751

Khan Tahir M, Patel R, Siddiqui AH. Furosemide. 2023 Jan. PMID: 29763096 Bookshelf ID: NBK499921

Felker GM, et al., Diuretic strategies in patients with acute decompensated heart failure. The New England Journal of Medicine. 2011; 364(9):797-805. DOI: https://doi.org/10.1056/NEJMoa1005419

Ferreira JP, et al., Proteomic and mechanistic analysis of spironolactone in patients at risk for HF. JACC Heart Failure. 2021; 9(4):268-277. https://doi.org/10.1016/j. jchf.2020.11.010 DOI: https://doi.org/10.1016/j.jchf.2020.11.010

Mishima E, Abe T. Role of the microbiota in hypertension and antihypertensive drug metabolism. Hypertens Res. Feb 2022; 45(2):246-253. doi: 10.1038/s41440-021- 00804-0. Epub 2021 Dec 9.PMID: 34887530 DOI: https://doi.org/10.1038/s41440-021-00804-0

Ju-Young K, et al., Harpagoside attenuates local bone Erosion and systemic osteoporosis in collagen-induced arthritis in mice. BMC Complement Med Ther. 2022 Aug 10; 22(1):214. doi: 10.1186/s12906-022-03694-y. DOI: https://doi.org/10.1186/s12906-022-03694-y

Gxaba N, Manganyi MC. The fight against infection and pain: Devil’s Claw (Harpagophytum procumbens) a Rich Source of Anti-Inflammatory Activity. Molecules. 2022 Jun; 6:27(11):3637. doi: 10.3390/molecules27113637.

Kaur R, Shekhar S, Prasad K. Secondary metabolites of fruits and vegetables with antioxidant potential. 2022 Feb 14; doi: 10.5772/intechopen.103707 DOI: https://doi.org/10.5772/intechopen.103707

Gudoityte E. et al., Ursolic and oleanolic acids: plant metabolites with neuroprotective potential. Int J Mol Sci. 2021; 22:4599. doi: 10.3390/ijms22094599 DOI: https://doi.org/10.3390/ijms22094599

Sheng K, et al., Alleviation effects of grape seed proanthocyanidin extract on inflammation and oxidative stress in a D-galactose-induced aging mouse model by modulating the gut microbiota. Food Funct. 2022 Feb 7; 13(3):1348-1359. doi: 10.1039/d1fo03396d. DOI: https://doi.org/10.1039/D1FO03396D

Gxaba N, Manganyi MC. The fight against infection and pain: Devil’s Claw (Harpagophytum procumbens) a Rich Source of Anti-Inflammatory Activity. Molecules. 2022 Jun 6; 27(11):3637. doi: 10.3390/molecules27113637. DOI: https://doi.org/10.3390/molecules27113637

Ewelina P, Dybowska M, et al., Identification and accumulation of phenolic compounds in the leaves and bark of Salix alba (L.) and their biological. Biomolecules. 2020; 10(10):1391; https://doi.org/10.3390/biom10101391 DOI: https://doi.org/10.3390/biom10101391

Chrubasik S, et al., Treatment of low back pain exacerbations with willow bark extract: a randomized double-blind study. Am J Med. 2000; 109(1):9-14. doi: 10.1016/s0002-9343(00)00461-1. DOI: https://doi.org/10.1016/S0002-9343(00)00442-3

Nora T, Mahmoud MF, et al. Phytochemistry, pharmacology and medicinal uses of plants of the genus salix: an updated review. Front Pharmacol. 2021. https://doi. org/10.3389/fphar.2021.593856

Antoniadou K, et al., Identification of salicylates in willow bark (salix cortex) for targeting peripheral inflammation. Int J Mol Sci. 2021 October 15; 22(20):11138. doi: 10.3390/ijms222011138. DOI: https://doi.org/10.3390/ijms222011138

Sinniah A, Yazid S, Flower RJ. From NSAIDs to glucocorticoids and beyond. Cells. 2021 Dec 14; 10(12):3524. doi: 10.3390/cells10123524 DOI: https://doi.org/10.3390/cells10123524

Sah A, Naseef PP, Kuruniyan et al. A comprehensive study of therapeutic applications of chamomile. Pharmaceuticals (Basel). 2022 Oct 19; 15(10):1284. doi: 10.3390/ph15101284. DOI: https://doi.org/10.3390/ph15101284

Amel B, et al., Chemical composition and biological activities of essential oils of Matricaria chamomilla L. from Tunisia. Chemistry and Biodiversity. 2020. doi: 10.1002/cbdv.201900619.

Srivastava JK, Shankar E, Gupta S. Inhibitory effects of chamomile extract on tumor necrosis factor alpha- induced activation of NF-kappaB in keratinocytes. Molecular and Cellular Biochemistry. 2010; doi: 10.1007/ s11010-009-0305-x

Bako E, Fehervari P, Garami A, et al., Efficacy of topical essential oils in musculoskeletal disorders: systematic review and meta-analysis of randomized controlled trials. Pharmaceuticals. 2023 Jan 19; 16(2):144. doi: 10.3390/ph16020144. DOI: https://doi.org/10.3390/ph16020144

Garbuio DC, Leite MN, Figueiredo SA, et al. Topical formulation containing chitosan-chamomile micropar- ticles in cutaneous wound healing in rats. J Wound Care. 2023 Mar 2; 32(Sup3a):xxii-xxx. doi: 10.12968/ jowc.2023.32.Sup3a.xxii. DOI: https://doi.org/10.12968/jowc.2023.32.Sup3a.xxii

Tan CSS, et al., Warfarin and food, herbal or dietary supplement interactions: A systematic review. Br J Clin Pharmacol. 2021 Feb; 87(2):352-374. doi: 10.1111/ bcp.14404. DOI: https://doi.org/10.1111/bcp.14404

Wu SJ, Liou CJ, Chen YL, et al., Fucoxanthin ameliorates oxidative stress and airway inflammation in tracheal epithelial cells and asthmatic mice. Cells. 2021; 10(6):1311. doi: 10.3390/cells10061311. DOI: https://doi.org/10.3390/cells10061311

Farzaei MH, Abbasabadi Z, Ardekani MRS, et al., A review on the composition, properties, and therapeutic applications of Salvia officinalis. Journal of Acupuncture and Meridian Studies. 2019; doi: 10.1016/j.jams.2019.01.004

Jalalipour M, Yegdaneh A, Talebi A, et al. Salvia officinalis leaf extracts protect against acute colitis in rats. Res Pharm Sci. 2022 Jul 14; 17(4):350-359. doi: 10.4103/1735-5362.350236. eCollection 2022 Aug.

Masyita A, Sari R, Astuti AD, et al., Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health. 2022 March 30; 13:100217. doi: 10.1016/j.fochx.2022.100217. DOI: https://doi.org/10.1016/j.fochx.2022.100217

Kim M, Jung J, Jeong NY, et al., The natural plant flavonoid apigenin is a strong antioxidant that effectively delays peripheral neurodegenerative processes. AnatSciInt, 2019; 94(4):285-294. doi: 10.1007/s12565-019-00486-2. DOI: https://doi.org/10.1007/s12565-019-00486-2

Ladio TA, Lozada M. Comparison of wild edible plant diversity and foraging strategies in two aboriginal communities of northwestern Patagonia, Argentina. 2004. doi: 10.2993/02780771(2004)24[239:COWEPD]2.0. CO;2

Banerjee S, Butcher R. Pharmacological interventions for chronic pain in pediatric patients: a review of guidelines. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health. 2020 May 5; PMID: 33119240.

Lasheen RA, El Tohamy A, Salaheldin EO. MIS-C frenzy: The importance of considering a broad differential diagnosis. SAGE Open Med Case Rep. 2022 March 30. doi: 10.1177/2050313X221088397. eCollection 2022. PMID: 35371489 DOI: https://doi.org/10.1177/2050313X221088397

Bhat R, Kamath NS, Rao R, Sneha S. Varicella pneumonia masquerading as interstitial lung disease: Non-specific interstitial pneumonitis. SAGE Open Med Case Rep. 2021 November 19; 9:2050313X211059293. doi: 10.1177/2050313X211059293.eCollection 2021. DOI: https://doi.org/10.1177/2050313X211059293

Monteiro SS, et al., Chemical composition and antimicrobial activity of essential oil of Piper ovatumVahl. Journal of Essential Oil Research. 2010. doi: 10.1080/10412905.2010.9700256 DOI: https://doi.org/10.1080/10412905.2010.9700256

Carvalho Lima L. de, et al., Aristolactams and other chemical constituents from the leaves of Piper ovatum Vahl (Piperaceae) and their cytotoxicity. Molecules. 2021. doi: 10.3390/molecules26185828

Rojas JA, Bermúdez CO, Hernández JM, et al., Evaluation of the wound healing properties of Piper marginatum and Piper tuberculatum extracts in guinea pigs. Journal of Ethnopharmacology. 2010. doi: 10.1016/j.jep.2010.04.004 DOI: https://doi.org/10.1016/j.jep.2010.04.004

Gutierrez-Grijalva AB, et al., Phenolic composition, anti-oxidant capacity and in vitro anti-inflammatory activity of infusions from Matico (Piper aduncum) Leaves. 2018. doi: 10.1007/s11130-018-0675-5

Farhan M. et al., Green tea catechins: nature’s way of preventing and treating cancer. International Journal of Molecular Sciences. 2022; 23(18):10713. doi: 10.3390/ ijms231810713. DOI: https://doi.org/10.3390/ijms231810713

Musial C, Kuban-Jankowska A, Gorska-Ponikowska M. Beneficial properties of green tea catechins. International Journal of Molecular Sciences. 2020; 21(5):1744. doi: 10.3390/ijms21051744. DOI: https://doi.org/10.3390/ijms21051744

Lin C, Tsai SH, Che L, Hung, Y. Willow Bark (Salix spp.) used for pain relief in arthritis: a meta-analysis of randomized controlled trials. Life. 2023: 13(10):2058. https://doi.org/10.3390/life13102058 DOI: https://doi.org/10.3390/life13102058

Hattori T, Wada Y, Yamada K, et al. Glycyrrhetinic acid inhibits angiogenic activity of endothelial cells and stimulates cell death by activating the unfolded protein response. Biochemical and Biophysical Research Communications. 2017; 493(1):120-126.

Brendler T. From bush medicine to modern phyto- pharmaceutical: a bibliographic review of Devil’s Claw (Harpagophytum spp.). Pharmaceuticals (Basel). 2021 Jul 27; 14(8):726. doi: 10.3390/ph14080726. DOI: https://doi.org/10.3390/ph14080726

Shara M, Stohs SJ, Mukattash TL. Cardiovascular safety of herbal medicines: a review of human and animal toxicological data. Drug safety. 2015; 38(9):809-828.

Lord C, Charman T, Havdahl A, et al., The Lancet Commission on the future of care and clinical research in autism. 2022 Jan 15; 399(10321):271-334. doi: 10.1016/ S0140-6736(21)01541-5. Epub 2021 Dec 6.

Barros M, Poppe SC, Bondan EF. Salvia officinalis and its main tanshinones: potential in the treatment of Alzheimer’s disease and other neurodegenerative disorders. 2018. doi: 10.4103/1673-5374.230273 DOI: https://doi.org/10.4103/1673-5374.230273

Yepez-Silva LD, et.al. Anti-inflammatory activity of ethanolic extract from Piper ovatum Vahl. Journal of Ethnopharmacology. 2020. doi: 10.1016/j. jep.2020.112896

Oguntibeju OO. Medicinal plants with anti-inflammatory activities from selected countries and regions of Africa. Journal of Inflammation Research. 2018; 11:307– 317. https://doi.org/10.2147/jir.s167789 DOI: https://doi.org/10.2147/JIR.S167789

Barnes PJ. Targeting the epigenome in the treatment of asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc. 2009; 6(8):693–696. [PubMed] [Google Scholar] DOI: https://doi.org/10.1513/pats.200907-071DP

Ahmed AU. An overview of inflammation: mechanism and consequences. Frontiers in Biology. 2011; 6(4).

https://doi.org/10.1007/s11515-011-1123-9 DOI: https://doi.org/10.1007/s11515-011-1123-9

Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng J, Li Y, Wang X, Zhao L. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. 2017; 9(6):7204–7218. https://doi.org/10.18632/oncotar- DOI: https://doi.org/10.18632/oncotarget.23208

get.23208

Singh V. Medicinal plants and bone healing. National Journal of Maxillofacial Surgery. 2017; 8(1):4. https:// doi.org/10.4103/0975-5950.208972 DOI: https://doi.org/10.4103/0975-5950.208972

Staples JE, Breiman RF, Powers AM. Chikungunya fever: An epidemiological review of a re-emerging infectious disease. Clin Infect Dis. 2009; 49:942-948. [Google Scholar] DOI: https://doi.org/10.1086/605496