Effect of Metal Nanoparticles in the Field Emission of Silicon Nanowires

Jump To References Section

Authors

  • Department of Physics, Maharani Cluster University, Bengaluru – 560001, Karnataka ,IN
  • Department of Physics, Maharani Cluster University, Bengaluru – 560001, Karnataka ,IN
  • Department of Physics, Maharani Cluster University, Bengaluru – 560001, Karnataka ,IN
  • Department of Physics, Maharani Cluster University, Bengaluru – 560001, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2024/36437

Keywords:

Electron Field Emission, Nanowires, Raman Shift, Turn-On Field, Silver Metal

Abstract

In this work, an efficient method is reported for creating a metal nanoparticle (silver) / Si composite structure consisting of a vertical array of silicon nanowires (SiNWs) decorated with silver metal nanoparticles. A two-stage metal-assisted etching method is employed to obtain SiNWs and Silver (Ag) metal nanoparticles are decorated on the SiNWs using the electroless deposition method. It allows the good coverage of silver metal nanoparticles over SiNWs. Scanning Electron Microscopy (SEM) analysis revealed that Ag was covered with SiNWs. High-work function metal nanoparticles such as Ag nanoparticles on SiNWs have been utilized in different applications such as photovoltaics and sensors. The size of SiNWs is determined through the Raman shift. The silicon optical phonon peak showed an increase in redshift and a decrease of full-width at half maxima with a decrease in diameter due to the quantum confinement. The Electron Field Emission (EFE) characteristics of the Agdecorated SiNW films were studied based on the current-voltage measurements and analyzed using the Fowler-Nordheim (F-N) equation. The low turn-on field is obtained through the Ag metal nanoparticles which have wider applications in lowpower operational devices.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-03-29

How to Cite

Madhavi, K., Raju, N. H., Basappa, M. C., & Gowda, V. C. V. (2024). Effect of Metal Nanoparticles in the Field Emission of Silicon Nanowires. Journal of Mines, Metals and Fuels, 72(1), 45–51. https://doi.org/10.18311/jmmf/2024/36437

Issue

Section

Articles
Received 2024-02-02
Accepted 2024-02-23
Published 2024-03-29

 

References

Otto M, Algasinger M, Branz H, Gesemann B, Gimpel T, Füchsel K, et al. Black Silicon Photovoltaics. Adv Optical Mater. 2015; 3(2):147-64. https://doi.org/10.1002/ adom.201400395 DOI: https://doi.org/10.1002/adom.201400395

Ghosh R, Ghosh J, Das R, Mawlong LPL, Paul KK, Giri PK. Multifunctional Ag nanoparticle decorated Si nanowires for sensing, photocatalysis and light emission applications. J Colloid Interface Sci. 2018; 53:464-73. https://doi.org/10.1016/j.jcis.2018.07.123 PMid:30099309 DOI: https://doi.org/10.1016/j.jcis.2018.07.123

Fang C, Agarwal A, Widjaja E, Garland MV, Wong SM, Linn L, et al. Metallization of Silicon Nanowires and SERS response from a single metallized nanowire. Chem Mater. 2009; 21(15):3542-8. https://doi.org/10.1021/ cm900132j DOI: https://doi.org/10.1021/cm900132j

Liao F, Wang T, Shao M. Silicon nanowires: Applications in catalysis with distinctive surface property, J Mater Sci: Mater Electron. 2015; 26(7):4722-9. https://doi. org/10.1007/s10854-015-2949-8 DOI: https://doi.org/10.1007/s10854-015-2949-8

Paul KK, Ghosh R, Giri PK. Mechanism of strong visible light photocatalysis by Ag2O nanoparticle-decorated monoclinic TiO2(B) porous nanorods. J Nanotechnology. 2016; 27(31):315703-3. https://doi.org/10.1088/0957- 4484/27/31/315703 PMCid:PMC9794414 DOI: https://doi.org/10.1088/0957-4484/27/31/315703

Kumar V, Saxena K, Shukla AK. Silicon nanowires prepared by Metal Induced Etching (MIE): Good field emitters. IET Micro Nano Lett. 2013; 8:311-14. https:// doi.org/10.1049/mnl.2012.0910

Richter H, Wang ZP, Ley L. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 1981; 39:625-9. https://doi.org/10.1016/0038- 1098(81)90337-9 DOI: https://doi.org/10.1016/0038-1098(81)90337-9

Zi J, Büscher H, Falter C, Ludwig W, Zhang K, Xie X. Raman shifts in Si nanocrystals. Appl Phys Lett. 1996; 69:200-2. https://doi.org/10.1063/1.117371 DOI: https://doi.org/10.1063/1.117371

Kyung S-J, Lee Y-H, Kim C-W, Lee J-H, Yeom G-Y. Field emission properties of carbon nanotubes synthesized by capillary type atmospheric pressure plasma enhanced chemical vapor deposition at low temperature. J Carbon. 2006; 44:1530-4. https://doi.org/10.1016/j. carbon.2005.12.020 DOI: https://doi.org/10.1016/j.carbon.2005.12.020

Antony RP, Mathews T, Panda K, B Sundaravel, Dash S, Tyagi AK. Enhanced field emission properties of electrochemically synthesized self-aligned nitrogendoped TiO2 nanotube array thin films. J Phys Chem. 2012; 116(31):16740-6. https://doi.org/10.1021/ jp302578b DOI: https://doi.org/10.1021/jp302578b

Deshpande AC, Koinkar PM, Ashtaputre SS, More MA, Gosavi SW, Godbole PD, et al. Field emission from oriented tin oxide rods. Thin Solid Films. 2006; 515(4):1450-4. https://doi.org/10.1016/j.tsf.2006.04.034 DOI: https://doi.org/10.1016/j.tsf.2006.04.034

Sreekanth M, Ghosh S, Biswas P, Kumar S, Srivastava P. Improved field emission from indium decorated multiwalled carbon nanotubes. Appl Surf Sci. 2016; 383:84-9. https://doi.org/10.1016/j.apsusc.2016.04.170 DOI: https://doi.org/10.1016/j.apsusc.2016.04.170

Sridhar S, Tiwary C, Vinod S, Taha-Tijerina JJ, Sridhar S, Kaushik K, et al. Field emission with ultralow turn on voltage from metal decorated carbon nanotubes. ACS Nano. 2014; 8:7763-70. https://doi.org/10.1021/ nn500921s PMid:25054222 DOI: https://doi.org/10.1021/nn500921s

Gautier L-A, Le Borgne V, Delegan N, Pandiyan R, El Khakani MA. Field electron emission enhancement of graphenated MWCNTs emitters following their decoration with Au nanoparticles by a pulsed laser ablation process. Nanotechnology. 2015; 26(4). https:// doi.org/10.1088/0957-4484/26/4/045706 PMid: 25567743 DOI: https://doi.org/10.1088/0957-4484/26/4/045706

Chen L, Wang L, Yu X, Zhang S, Li D, Xu C, et al. Constructing Ag nanoparticles-single wall carbon hybrid nanostructure to improve field emission properties. Appl Surf Sci. 2013; 265:187-91. https://doi. org/10.1016/j.apsusc.2012.10.164 DOI: https://doi.org/10.1016/j.apsusc.2012.10.164

Huang CT, Hsin CL, Huang KW, Lee CY, Yeh PH, Chen US, et al. Field emission enhancement of Au-Si nanoparticle- decorated silicon nanowires. Appl Phys Lett. 2007; 91. https://doi.org/10.1063/1.2777181 DOI: https://doi.org/10.1063/1.2777181

Madhavi K, Suvarna RP, Ghosh M, Shaik H, Rao GM. Effect of plasma ion etching towards superhydrophobicity. J. Mater. 2016; 3:1907-13. https://doi. org/10.1016/j.matpr.2016.04.091 DOI: https://doi.org/10.1016/j.matpr.2016.04.091

Sahoo SK, Marikani A. Morphological dependence of field emission properties of silicon nanowire arrays. J Nano. 2016; 11(02). https://doi.org/10.1142/ S179329201650017X DOI: https://doi.org/10.1142/S179329201650017X

Kumar V, Saxena SK, Kaushik V, Saxena K, Shukla AK, Kumar R. Silicon nanowires prepared by Metal Induced Etching (MIE): Good field emitters. RSC Adv. 2014; 4. https://doi.org/10.1039/C4RA11093E DOI: https://doi.org/10.1039/C4RA11093E

Raza MMH, Aalam SM, Sadiq M, Sarvar M, Zulfequar M, Husain S, et al. Study the electron field emission properties of silver nanoparticles decorated carbon nanotubes-based cold-cathode field emitters via postplasma treatment. J Mater Sci Mater Electron. 2022; 33: 7191-211. https://doi.org/10.1007/s10854-022-07900-y DOI: https://doi.org/10.1007/s10854-022-07900-y

de Heer WA, Ch telain A, Ugarte D. Carbon nanotube field-emission electron source. J Science. 1995; 270:1179- 80. https://doi.org/10.1126/science.270.5239.1179 DOI: https://doi.org/10.1126/science.270.5239.1179

le Fèbre AJ, Abelmann L, Lodder JC. Field emission at nanometer distances for high-resolution positioning. J Vac Sci Technol. 2008; B(26):724-9. https://doi. org/10.1116/1.2894898 DOI: https://doi.org/10.1116/1.2894898

Most read articles by the same author(s)