Effect of Metal Nanoparticles in the Field Emission of Silicon Nanowires
DOI:
https://doi.org/10.18311/jmmf/2024/36437Keywords:
Electron Field Emission, Nanowires, Raman Shift, Turn-On Field, Silver MetalAbstract
In this work, an efficient method is reported for creating a metal nanoparticle (silver) / Si composite structure consisting of a vertical array of silicon nanowires (SiNWs) decorated with silver metal nanoparticles. A two-stage metal-assisted etching method is employed to obtain SiNWs and Silver (Ag) metal nanoparticles are decorated on the SiNWs using the electroless deposition method. It allows the good coverage of silver metal nanoparticles over SiNWs. Scanning Electron Microscopy (SEM) analysis revealed that Ag was covered with SiNWs. High-work function metal nanoparticles such as Ag nanoparticles on SiNWs have been utilized in different applications such as photovoltaics and sensors. The size of SiNWs is determined through the Raman shift. The silicon optical phonon peak showed an increase in redshift and a decrease of full-width at half maxima with a decrease in diameter due to the quantum confinement. The Electron Field Emission (EFE) characteristics of the Agdecorated SiNW films were studied based on the current-voltage measurements and analyzed using the Fowler-Nordheim (F-N) equation. The low turn-on field is obtained through the Ag metal nanoparticles which have wider applications in lowpower operational devices.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2024-02-23
Published 2024-03-29
References
Otto M, Algasinger M, Branz H, Gesemann B, Gimpel T, Füchsel K, et al. Black Silicon Photovoltaics. Adv Optical Mater. 2015; 3(2):147-64. https://doi.org/10.1002/ adom.201400395 DOI: https://doi.org/10.1002/adom.201400395
Ghosh R, Ghosh J, Das R, Mawlong LPL, Paul KK, Giri PK. Multifunctional Ag nanoparticle decorated Si nanowires for sensing, photocatalysis and light emission applications. J Colloid Interface Sci. 2018; 53:464-73. https://doi.org/10.1016/j.jcis.2018.07.123 PMid:30099309 DOI: https://doi.org/10.1016/j.jcis.2018.07.123
Fang C, Agarwal A, Widjaja E, Garland MV, Wong SM, Linn L, et al. Metallization of Silicon Nanowires and SERS response from a single metallized nanowire. Chem Mater. 2009; 21(15):3542-8. https://doi.org/10.1021/ cm900132j DOI: https://doi.org/10.1021/cm900132j
Liao F, Wang T, Shao M. Silicon nanowires: Applications in catalysis with distinctive surface property, J Mater Sci: Mater Electron. 2015; 26(7):4722-9. https://doi. org/10.1007/s10854-015-2949-8 DOI: https://doi.org/10.1007/s10854-015-2949-8
Paul KK, Ghosh R, Giri PK. Mechanism of strong visible light photocatalysis by Ag2O nanoparticle-decorated monoclinic TiO2(B) porous nanorods. J Nanotechnology. 2016; 27(31):315703-3. https://doi.org/10.1088/0957- 4484/27/31/315703 PMCid:PMC9794414 DOI: https://doi.org/10.1088/0957-4484/27/31/315703
Kumar V, Saxena K, Shukla AK. Silicon nanowires prepared by Metal Induced Etching (MIE): Good field emitters. IET Micro Nano Lett. 2013; 8:311-14. https:// doi.org/10.1049/mnl.2012.0910
Richter H, Wang ZP, Ley L. The one phonon Raman spectrum in microcrystalline silicon. Solid State Commun. 1981; 39:625-9. https://doi.org/10.1016/0038- 1098(81)90337-9 DOI: https://doi.org/10.1016/0038-1098(81)90337-9
Zi J, Büscher H, Falter C, Ludwig W, Zhang K, Xie X. Raman shifts in Si nanocrystals. Appl Phys Lett. 1996; 69:200-2. https://doi.org/10.1063/1.117371 DOI: https://doi.org/10.1063/1.117371
Kyung S-J, Lee Y-H, Kim C-W, Lee J-H, Yeom G-Y. Field emission properties of carbon nanotubes synthesized by capillary type atmospheric pressure plasma enhanced chemical vapor deposition at low temperature. J Carbon. 2006; 44:1530-4. https://doi.org/10.1016/j. carbon.2005.12.020 DOI: https://doi.org/10.1016/j.carbon.2005.12.020
Antony RP, Mathews T, Panda K, B Sundaravel, Dash S, Tyagi AK. Enhanced field emission properties of electrochemically synthesized self-aligned nitrogendoped TiO2 nanotube array thin films. J Phys Chem. 2012; 116(31):16740-6. https://doi.org/10.1021/ jp302578b DOI: https://doi.org/10.1021/jp302578b
Deshpande AC, Koinkar PM, Ashtaputre SS, More MA, Gosavi SW, Godbole PD, et al. Field emission from oriented tin oxide rods. Thin Solid Films. 2006; 515(4):1450-4. https://doi.org/10.1016/j.tsf.2006.04.034 DOI: https://doi.org/10.1016/j.tsf.2006.04.034
Sreekanth M, Ghosh S, Biswas P, Kumar S, Srivastava P. Improved field emission from indium decorated multiwalled carbon nanotubes. Appl Surf Sci. 2016; 383:84-9. https://doi.org/10.1016/j.apsusc.2016.04.170 DOI: https://doi.org/10.1016/j.apsusc.2016.04.170
Sridhar S, Tiwary C, Vinod S, Taha-Tijerina JJ, Sridhar S, Kaushik K, et al. Field emission with ultralow turn on voltage from metal decorated carbon nanotubes. ACS Nano. 2014; 8:7763-70. https://doi.org/10.1021/ nn500921s PMid:25054222 DOI: https://doi.org/10.1021/nn500921s
Gautier L-A, Le Borgne V, Delegan N, Pandiyan R, El Khakani MA. Field electron emission enhancement of graphenated MWCNTs emitters following their decoration with Au nanoparticles by a pulsed laser ablation process. Nanotechnology. 2015; 26(4). https:// doi.org/10.1088/0957-4484/26/4/045706 PMid: 25567743 DOI: https://doi.org/10.1088/0957-4484/26/4/045706
Chen L, Wang L, Yu X, Zhang S, Li D, Xu C, et al. Constructing Ag nanoparticles-single wall carbon hybrid nanostructure to improve field emission properties. Appl Surf Sci. 2013; 265:187-91. https://doi. org/10.1016/j.apsusc.2012.10.164 DOI: https://doi.org/10.1016/j.apsusc.2012.10.164
Huang CT, Hsin CL, Huang KW, Lee CY, Yeh PH, Chen US, et al. Field emission enhancement of Au-Si nanoparticle- decorated silicon nanowires. Appl Phys Lett. 2007; 91. https://doi.org/10.1063/1.2777181 DOI: https://doi.org/10.1063/1.2777181
Madhavi K, Suvarna RP, Ghosh M, Shaik H, Rao GM. Effect of plasma ion etching towards superhydrophobicity. J. Mater. 2016; 3:1907-13. https://doi. org/10.1016/j.matpr.2016.04.091 DOI: https://doi.org/10.1016/j.matpr.2016.04.091
Sahoo SK, Marikani A. Morphological dependence of field emission properties of silicon nanowire arrays. J Nano. 2016; 11(02). https://doi.org/10.1142/ S179329201650017X DOI: https://doi.org/10.1142/S179329201650017X
Kumar V, Saxena SK, Kaushik V, Saxena K, Shukla AK, Kumar R. Silicon nanowires prepared by Metal Induced Etching (MIE): Good field emitters. RSC Adv. 2014; 4. https://doi.org/10.1039/C4RA11093E DOI: https://doi.org/10.1039/C4RA11093E
Raza MMH, Aalam SM, Sadiq M, Sarvar M, Zulfequar M, Husain S, et al. Study the electron field emission properties of silver nanoparticles decorated carbon nanotubes-based cold-cathode field emitters via postplasma treatment. J Mater Sci Mater Electron. 2022; 33: 7191-211. https://doi.org/10.1007/s10854-022-07900-y DOI: https://doi.org/10.1007/s10854-022-07900-y
de Heer WA, Ch telain A, Ugarte D. Carbon nanotube field-emission electron source. J Science. 1995; 270:1179- 80. https://doi.org/10.1126/science.270.5239.1179 DOI: https://doi.org/10.1126/science.270.5239.1179
le Fèbre AJ, Abelmann L, Lodder JC. Field emission at nanometer distances for high-resolution positioning. J Vac Sci Technol. 2008; B(26):724-9. https://doi. org/10.1116/1.2894898 DOI: https://doi.org/10.1116/1.2894898