Optimization of the Design of Shell and Double Concentric Tube Heat Exchanger using the Jaya Algorithm
DOI:
https://doi.org/10.18311/jmmf/2023/43084Keywords:
Economic Optimization, Heat Exchangers, Jaya Algorithm.Abstract
Heat exchangers are used to carry heat energy between two or more fluids. Different forms of heat exchangers are used in various applications. Here we are considered for optimization of shell and double concentric tube heat exchanger. This kind of heat exchangers are used in many years for their satisfactory services for industry, availability of set of symbols and excellence for design, modelling and are produced from different of materials. In this paper a novel computative technique called Jaya Algorithm is used and the aim is to lower the overall cost by designing the heat exchanger with a shell and two concentric tubes. The principle behind this strategy is that the best answer for a given problem should be sought, while the lowest standard approach should be avoided. It proves to be very efficient with a typical start and hence this algorithm would help to achieve our objective function that is in comparison to typical heat exchangers the overall cost has dropped by around 43% and 34% with GA based heat exchanger with a shell and dual concentric tube heat exchangers.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Muralikrishna K, Shenoy UV. Heat exchanger design targets for minimum area and cost. Chemical Engineering Research and Design. 2000; 78(2):161-7. https://doi. org/10.1205/026387600527185 DOI: https://doi.org/10.1205/026387600527185
Chaudhuri PD, Diwekar UM, Logsdon JS. An automated approach for the optimal design of heat exchangers. Industrial and Engineering Chemistry Research. 1997; 36(9):3685-93. https://doi.org/10.1021/ie970010h DOI: https://doi.org/10.1021/ie970010h
Ravagnani MASS, Da Silva AP, Andrade AL. Detailed equipment design in heat exchanger networks synthesis and optimisation. Applied Thermal Engineering. 2003; 23(2):141-51. https://doi.org/10.1016/S1359- 4311(02)00156-4 DOI: https://doi.org/10.1016/S1359-4311(02)00156-4
Costa LH, Queiroz M. Design optimization of shell-andtube heat exchangers. Appl Therm Eng. 2008; 28. https:// doi.org/10.1016/j.applthermaleng.2007.11.009
Kara YA, Güraras Ö. A computer program for designing of shell-and-tube heat exchangers. Applied Thermal Engineering. 2004; 24(13):1797-805. https://doi. org/10.1016/j.applthermaleng.2003.12.014 DOI: https://doi.org/10.1016/j.applthermaleng.2003.12.014
Caputo AC, Pelagagge PM, Salini P. Heat exchanger design based on economic optimisation. Applied Thermal Engineering. 2008; 28(10):1151-9. https://doi. org/10.1016/j.applthermaleng.2007.08.010 DOI: https://doi.org/10.1016/j.applthermaleng.2007.08.010
Bougriou C, Baadache K. Shell-and-double concentrictube heat exchangers. Heat and Mass Transfer. 2010; 46(3):315-22. https://doi.org/10.1007/s00231-010- 0572-z DOI: https://doi.org/10.1007/s00231-010-0572-z
Baadache K, Bougriou C. Optimisation of the design of shell and double concentric tubes heat exchanger using the Genetic Algorithm. Heat and Mass Transfer. 2015; 51(10):1371-81. https://doi.org/10.1007/s00231-015- 1501-y DOI: https://doi.org/10.1007/s00231-015-1501-y
Mishra M, Das PK, Sarangi S. Second law based optimisation of crossflow plate-fin heat exchanger design using genetic algorithm. Applied Thermal Engineering. 2009; 29(14-15):2983-9. https://doi.org/10.1016/j.applthermaleng. 2009.03.009 DOI: https://doi.org/10.1016/j.applthermaleng.2009.03.009
Ponce-Ortega JM, Serna-González M, Jiménez-Gutiérrez A. Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers. Applied Thermal Engineering. 2009; 29(2-3):203-9. https://doi. org/10.1016/j.applthermaleng.2007.06.040 DOI: https://doi.org/10.1016/j.applthermaleng.2007.06.040
Hajabdollahi H, Ahmadi P, Dincer I. Thermoeconomic optimization of a shell and tube condenser using both genetic algorithm and particle swarm. International Journal of Refrigeration. 2011; 34(4):1066-76. https:// doi.org/10.1016/j.ijrefrig.2011.02.014 DOI: https://doi.org/10.1016/j.ijrefrig.2011.02.014
Selbaş R, Kızılkan Ö, Reppich M. A new design approach for shell-and-tube heat exchangers using genetic algorithms from economic point of view. Chemical Engineering and Processing: Process Intensification. 2006; 45(4):268-75. https://doi.org/10.1016/j. cep.2005.07.004 DOI: https://doi.org/10.1016/j.cep.2005.07.004
Babu BV, Munawar SA. Differential evolution strategies for optimal design of shell-and-tube heat exchangers. Chemical Engineering Science. 2007; 62(14):3720-39. https://doi.org/10.1016/j.ces.2007.03.039 DOI: https://doi.org/10.1016/j.ces.2007.03.039
Şahin AŞ, Kılıç B, Kılıç U. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm. Energy Conversion and Management. 2011; 52(11):3356-62. https://doi. org/10.1016/j.enconman.2011.07.003 DOI: https://doi.org/10.1016/j.enconman.2011.07.003
Costa AL, Queiroz EM. Design optimization of shell-andtube heat exchangers. Applied Thermal Engineering. 2008; 28(14-15):1798-805. https://doi.org/10.1016/j. applthermaleng.2007.11.009 DOI: https://doi.org/10.1016/j.applthermaleng.2007.11.009
Vahdat Azad A, Amidpour M. Economic optimization of shell and tube heat exchanger based on constructal theory. Energy. 2011. https://doi.org/10.1115/ES2010- 90360 DOI: https://doi.org/10.1016/j.energy.2010.11.041
Fesanghary M, Damangir E, Soleimani I. Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Applied Thermal Engineering. 2009; 29(5-6):1026-31. https://doi.org/10.1016/j.applthermaleng.2008.05.018 DOI: https://doi.org/10.1016/j.applthermaleng.2008.05.018
Ravagnani MA, Silva AP, Biscaia Jr EC, Caballero JA. Optimal design of shell-and-tube heat exchangers using particle swarm optimization. Industrial and Engineering Chemistry Research. 2009; 48(6):2927-35. https://doi. org/10.1021/ie800728n DOI: https://doi.org/10.1021/ie800728n
Wang JJ, Jing YY, Zhang CF. Optimization of capacity and operation for CCHP system by genetic algorithm. Optimization of the Design of Shell and Double Concentric Tube Heat Exchanger using the Jaya Algorithm Applied Energy. 2010; 87(4):1325-35. https://doi. org/10.1016/j.apenergy.2009.08.005 DOI: https://doi.org/10.1016/j.apenergy.2009.08.005
Rao RV, Patel VK. Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm. International Journal of Thermal Sciences. 2010; 49(9):1712-21. https://doi. org/10.1016/j.ijthermalsci.2010.04.001 DOI: https://doi.org/10.1016/j.ijthermalsci.2010.04.001
Rao RV, Patel V. Multi-objective optimization of heat exchangers using a modified teaching-learningbased optimization algorithm. Applied Mathematical Modelling. 2013; 37(3):1147-62. https://doi. org/10.1016/j.apm.2012.03.043 DOI: https://doi.org/10.1016/j.apm.2012.03.043
Tharakeshwar TK, Seetharamu KN, Prasad BD. Multiobjective optimization using bat algorithm for shell and tube heat exchangers. Applied Thermal Engineering. 2017; 110:1029-38. https://doi.org/10.1016/j.applthermaleng. 2016.09.031 DOI: https://doi.org/10.1016/j.applthermaleng.2016.09.031
Veerabhadrappa K, Tharakeshwar TK, Seetharamu KN, Hegde PG. Optimisation of shell and double concentric tube heat exchanger using the cuckoo optimization algorithm. In Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017). Begel House Inc. 2017. https://doi.org/10.1615/IHMTC-2017.2490 DOI: https://doi.org/10.1615/IHMTC-2017.2490
Rao R. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations. 2016; 7(1):19-34. https://doi.org/10.5267/j.ijiec.2015.8.004 DOI: https://doi.org/10.5267/j.ijiec.2015.8.004
Idelcik IE. Handbook of hydraulic resistance. Eyrolles, Paris; 1986.