Optimization of the Design of Shell and Double Concentric Tube Heat Exchanger using the TLBO Algorithm
DOI:
https://doi.org/10.18311/jmmf/2023/43184Keywords:
Economic Optimization, Heat Exchangers, TLBO Algorithm.Abstract
Heat Exchangers are devices that allow energy in form of heat to be transferred between two or more fluids. HEs are utilized in a wide range of commercial processes, including chemical, steel, and power generation. Here, we focus on the optimization of shell and dual concentric tube HEs. This type of HE has been in use for many years because of their reliable service to enterprise, the availability of a set of symbols, and perfection in design and modeling, and they are made from a wide range of materials. In this paper a novel computative technique called TLBO Algorithm is used, and the aim is to lower the overall cost by designing the HE with a shell and two concentric tubes. For every iteration, the algorithm detects and replaces duplicate solutions in order to produce an effective functional evaluation, which may then be used to choose the best solution. With a usual start, it proves to be quite efficient, and therefore this algorithm will assist us in achieving our aim function, which is in contrast to conventional HEs. With GA based HEs with a shell and twin concentric tube HEs, the overall cost has decreased by roughly 43% and 34%, respectively.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Muralikrishna K, Shenoy UV. Heat exchanger design targets for minimum area and cost. Chemical Engineering Research and Design. 2000; 78(2):161-7. https://doi.org/10.1205/026387600527185 DOI: https://doi.org/10.1205/026387600527185
Chaudhuri PD, Diwekar UM, Logsdon JS. An automated approach for the optimal design of heat exchangers. Industrial and Engineering Chemistry Research. 1997; 36(9):3685-93. https://doi.org/10.1021/ie970010h DOI: https://doi.org/10.1021/ie970010h
Ravagnani MASS, Da Silva AP, Andrade AL. Detailed equipment design in heat exchanger networks synthesis and optimisation. Applied Thermal Engineering. 2003; 23(2):141-51. https://doi.org/10.1016/S1359- 4311(02)00156-4 DOI: https://doi.org/10.1016/S1359-4311(02)00156-4
Mukherjee R. Effectively design shell-and-tube heat exchangers. Chemical Engineering Progress. 1998; 94(2):21-37.
Caputo AC, Pelagagge PM, Salini P. Heat exchanger design based on economic optimisation. Applied Thermal Engineering. 2008; 28(10):1151-9. https://doi. org/10.1016/j.applthermaleng.2007.08.010 DOI: https://doi.org/10.1016/j.applthermaleng.2007.08.010
Kara YA, Güraras Ö. A computer program for designing of shell-and-tube heat exchangers. Applied Thermal Engineering. 2004; 24(13):1797-805. https://doi. org/10.1016/j.applthermaleng.2003.12.014 DOI: https://doi.org/10.1016/j.applthermaleng.2003.12.014
Bougriou C, Baadache K. Shell-and-double concentrictube heat exchangers. Heat and Mass Transfer. 2010; 46(3):315-22. https://doi.org/10.1007/s00231-010- 0572-z DOI: https://doi.org/10.1007/s00231-010-0572-z
Baadache K, Bougriou C. Optimisation of the design of shell and double concentric tubes heat exchanger using the Genetic Algorithm. Heat and Mass Transfer. 2015; 51(10):1371-81. https://doi.org/10.1007/s00231-015- 1501-y DOI: https://doi.org/10.1007/s00231-015-1501-y
Schaffer JD. Multiple objective optimizations with vector evaluated genetic algorithms. In Proceedings of the first international conference on genetic algorithms and their applications, 1985. Lawrence Erlbaum Associates. Inc., Publishers; 1985.
Fettaka S, Thibault J, Gupta Y. Design of shelland- tube heat exchangers using Multi objective optimization. International Journal of Heat and Mass Transfer. 2013; 60:343-54. https://doi.org/10.1016/j. ijheatmasstransfer.2012.12.047 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2012.12.047
Sanaye S, Hajabdollahi H. Multi-objective optimization of shell and tube heat exchangers. Applied Thermal Engineering. 2010; 30(14-15):1937-45. https://doi. org/10.1016/j.applthermaleng.2010.04.018 DOI: https://doi.org/10.1016/j.applthermaleng.2010.04.018
Mishra M, Das PK, Sarangi S. Second law based optimisation of crossflow plate-fin heat exchanger design using genetic algorithm. Applied Thermal Engineering. 2009; 29(14-15):2983-9. https://doi.org/10.1016/j. applthermaleng.2009.03.009 DOI: https://doi.org/10.1016/j.applthermaleng.2009.03.009
Ponce-Ortega JM, Serna-González M, Jiménez- Gutiérrez A. Use of genetic algorithms for the optimal design of shell-and-tube heat exchangers. Applied Thermal Engineering. 2009; 29(2-3):203-9. https://doi. org/10.1016/j.applthermaleng.2007.06.040 DOI: https://doi.org/10.1016/j.applthermaleng.2007.06.040
Eryener D. Thermoeconomic optimization of baffle spacing for shell and tube heat exchangers. Energy Conversion and Management. 2006; 47(11-12):1478-89. https://doi.org/10.1016/j.enconman.2005.08.001 DOI: https://doi.org/10.1016/j.enconman.2005.08.001
Asadi M, Song Y, Sunden B, Xie G. Economic optimization design of shell-and-tube heat exchangers by a cuckoosearch- algorithm. Applied Thermal Engineering. 2014; 73(1):1032-40. https://doi.org/10.1016/j. applthermaleng.2014.08.061 DOI: https://doi.org/10.1016/j.applthermaleng.2014.08.061
Guo J, Cheng L, Xu M. Optimization design of shell-andtube heat exchanger by entropy generation minimization and genetic algorithm. Applied Thermal Engineering. 2009; 29(14-15):2954-60. https://doi.org/10.1016/j. applthermaleng.2009.03.011 DOI: https://doi.org/10.1016/j.applthermaleng.2009.03.011
Şahin AŞ, Kılıç B, Kılıç U. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm. Energy Conversion and Management. 2011; 52(11):3356-62. https://doi.org/10.1016/j.enconman.2011.07.003 DOI: https://doi.org/10.1016/j.enconman.2011.07.003
Costa AL, Queiroz EM. Design optimization of shell-andtube heat exchangers. Applied Thermal Engineering. 2008; 28(14-15):1798-805. https://doi.org/10.1016/j. applthermaleng.2007.11.009 DOI: https://doi.org/10.1016/j.applthermaleng.2007.11.009
Azad AV, Amidpour M. Economic optimization of shell and tube heat exchanger based on constructal theory. Energy. 2011; 36(2):1087-96. https://doi.org/10.1016/j. energy.2010.11.041 DOI: https://doi.org/10.1016/j.energy.2010.11.041
Fesanghary M, Damangir E, Soleimani I. Design optimization of shell and tube heat exchangers using global sensitivity analysis and harmony search algorithm. Applied Thermal Engineering. 2009; 29(5-6):1026-31. https://doi.org/10.1016/j.applthermaleng.2008.05.018 DOI: https://doi.org/10.1016/j.applthermaleng.2008.05.018
Ravagnani MA, Silva AP, Biscaia Jr EC, Caballero JA. Optimal design of shell-and-tube heat exchangers using particle swarm optimization. Industrial and Engineering Chemistry Research. 2009 ; 48(6):2927-35. https://doi. org/10.1021/ie800728n DOI: https://doi.org/10.1021/ie800728n
Tharakeshwar TK, Seetharamu KN, Prasad BD. Multiobjective optimization using bat algorithm for shell and tube heat exchangers. Applied Thermal Engineering. 2017; 110:1029-38. https://doi.org/10.1016/j. applthermaleng.2016.09.031 DOI: https://doi.org/10.1016/j.applthermaleng.2016.09.031
Veerabhadrappa K, Tharakeshwar TK, Seetharamu KN, Hegde PG. Optimisation of shell and double concentric tube heat exchanger using the cuckoo optimization algorithm. In Proceedings of the 24th National and 2nd International ISHMT-ASTFE Heat and Mass Transfer Conference (IHMTC-2017). Begel House Inc; 2017. https://doi.org/10.1615/IHMTC-2017.2490 DOI: https://doi.org/10.1615/IHMTC-2017.2490
Rao R. Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained optimization problems. Decision Science Letters. 2016; 5(1):1-30. https://doi.org/10.5267/j. dsl.2015.9.003 DOI: https://doi.org/10.5267/j.dsl.2015.9.003