Effects of ZnO Nano-Particles’ on The Performance Study of CI Engines Utilizing a Combination of Diesel and Neem Biodiesel

Jump To References Section

Authors

  • Faculty of Mechanical Engineeirng, Shri Ramswaroop Memorial University, Lucknow - 225003, Uttar Pradesh ,IN
  • Faculty of Mechanical Engineeirng, Shri Ramswaroop Memorial University, Lucknow - 225003, Uttar Pradesh ,IN
  • Faculty of Mechanical Engineering, Bundelkhand Institute of Engineering and Technology, Jhansi - 284128, Uttar Pradesh ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/45491

Keywords:

Biodiesel, Calorific Value, CI Engine, Kinematic Viscosity, Nanoparticles

Abstract

Study on the exploitation of nano-materials has produced promising results in several applications, including medicine and reversing ecological damage. ZnO nanoparticles are added to diesel and biodiesel blends in this investigation. The primary purpose of this investigation was to examine the impact of ZnO nanoparticle incorporation on engine outcome measures. Developing countries are currently investing in the development of better diesel and petrol better options. In the present investigation, diesel is merged with biofuel made from neem oil at a range of mixtures (5%, 10%, 15%, 20%, and 25%), with ZnO nanoparticles added to the B25% mixture at a range of percentages (25, 50, 75, 100 ppm). The chemical composition and utility of these combinations are examined. Increases in biodiesel and ZnO nanoparticle mixtures are followed by increases in calorific value and kinematic viscosity. As more biofuel and zinc oxide nanoparticles were introduced, BTE and BSFC in the performance test rose.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2024-09-05

How to Cite

Singh, R., Porwal, R. K., & Verma, V. (2024). Effects of ZnO Nano-Particles’ on The Performance Study of CI Engines Utilizing a Combination of Diesel and Neem Biodiesel. Journal of Mines, Metals and Fuels, 71(12B), 06–11. https://doi.org/10.18311/jmmf/2023/45491

Issue

Section

Articles

 

References

Canakci M, Van Gerpen JH. Comparison of engine performance and emissions for petroleum diesel fuel, yellow grease biodiesel, and soybean oil biodiesel. Trans ASAE. 2003; 46(4):937-44. https://doi.org/10.13031/2013.13948 DOI: https://doi.org/10.13031/2013.13948

Freedman B, Pryde EH. Fatty esters from vegetable oils for use as a diesel fuel. Tran ASAE. 1982:117-22.

Akintayo ET. Characteristics and composition of Parkia biglobosa and Jatropha curcas oils and cakes. Bioresour Technol. 2004; 92:307-10. https://doi.org/10.1016/S09608524(03)00197-4 PMid:14766165 DOI: https://doi.org/10.1016/S0960-8524(03)00197-4

Geyer SM, Jacobus MJ, Lestz SS. Comparison of diesel engine performance and emissions from neat and transesterified vegetable oils. Trans ASAE. 1984; 27(2):375-81. https://doi.org/10.13031/2013.32795 DOI: https://doi.org/10.13031/2013.32795

Schwab AW, Bagby MO, Freedman B. Preparation and properties of diesel fuels from vegetable oils. Fuel. 1987; 66(10):1372-8. https://doi.org/10.1016/00162361(87)90184-0 DOI: https://doi.org/10.1016/0016-2361(87)90184-0

Srivastava A, Prasad R. Triglycerides-based diesel fuels. Renew Sustain Energy Rev. 2000; 4(2):111-33. https://doi.org/10.1016/S1364-0321(99)00013-1 DOI: https://doi.org/10.1016/S1364-0321(99)00013-1

Graboski MS, McCormick RL. Combustion of fat and vegetable oil derived fuels in diesel engines. Prog Energy Combust Sci. 1998; 24(2):125-64. https://doi.org/10.1016/ S0360-1285(97)00034-8 DOI: https://doi.org/10.1016/S0360-1285(97)00034-8

Sharp CA, Howell SA, Jobe J. The effect of bio-diesel fuels on transient emissions from modern diesel engines, part-I regulated emissions and performance. CEC/SAE Spring Fuel Lubri Meet Expo; 2000. https://doi.org/10.4271/2000-01-1967 DOI: https://doi.org/10.4271/2000-01-1967

McCormick RL, Graboski MS, Alleman TL, Herring AM, Tyson KS. Impact of biodiesel source material and chemical structure on emissions of criteria pollutants from a heavyduty engine. Environ Sci Technol. 2001; 35(9):1742-7. https://doi.org/10.1021/es001636t PMid:11355187 DOI: https://doi.org/10.1021/es001636t

EPA Report. A comprehensive analysis of biodiesel impacts on exhaust emissions. Draft Tech Rep; 2002.

Agarwal D, Sinha S, Agarwal AK. Experimental investigation of control of NOx emissions in biodiesel-fueled compression ignition engine. Renew Energ. 2006; 31(14):2356-69. https://doi.org/10.1016/j.renene.2005.12.003 DOI: https://doi.org/10.1016/j.renene.2005.12.003

Carraretto C. Biodiesel as alternative fuel: Experimental analysis and energetic evaluations. Energ. 2004; 29(1215):2195-211. https://doi.org/10.1016/j.energy.2004.03.042 DOI: https://doi.org/10.1016/j.energy.2004.03.042

Aziz A, Said MF, Md A, Awang. 2005.

Rao YVH, Voleti RS, Hariharan VS, Raju AVS. Jatropha oil methyl ester and its blends used as an alternative fuel in diesel engine. Int J Agric Eng. 2008; 1(2):32-38.

Baiju B, Naik MK, Das LM. A comparative evaluation of compression ignition engine characteristics using methyl and ethyl esters of Karanja oil. Renew Energ. 2009; 34(6):1616-21. https://doi.org/10.1016/j.renene.2008.11.020 DOI: https://doi.org/10.1016/j.renene.2008.11.020

Agarwal AK. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog Energ Combust Sci. 2007; 33(3):233-71. https://doi.org/10.1016/j.pecs.2006.08.003 DOI: https://doi.org/10.1016/j.pecs.2006.08.003

Maithil P, Gupta P, Chandravanshi ML. Study of mechanical properties of the natural-synthetic fiber reinforced polymer matrix composite. Mat Today: Proc. 2023. https://doi.org/10.1016/j.matpr.2023.01.245 DOI: https://doi.org/10.1016/j.matpr.2023.01.245

Raheman H, Ghadge SV. Performance of compression ignition engine with mahua (Madhuca indica) biodiesel. Fuel. 2007; 86(16):2568-73. https://doi.org/10.1016/j.fuel.2007.02.019 DOI: https://doi.org/10.1016/j.fuel.2007.02.019

Raheman H, Ghadge SV. Performance of diesel engine with biodiesel at varying compression ratio and ignition timing. Fuel. 2008 Sep;87(12):2659-66. https://doi.org/10.1016/j.fuel.2008.03.006 DOI: https://doi.org/10.1016/j.fuel.2008.03.006

Ramos MJ, Fernández CM, Casas A, Rodríguez L, Pérez Á. Influence of fatty acid composition of raw materials on biodiesel properties. Biores Technol. 2009; 100(1):2618. https://doi.org/10.1016/j.biortech.2008.06.039 PMid:18693011 DOI: https://doi.org/10.1016/j.biortech.2008.06.039

Pradeep V, Sharma RP. Use of HOT EGR for NOx control in a compression ignition engine fuelled with bio-diesel from Jatropha oil. Renew Energ. 2007; 32(7):1136-54. https://doi.org/10.1016/j.renene.2006.04.017 DOI: https://doi.org/10.1016/j.renene.2006.04.017

Chauhan BS, Kumar N, Cho HM. Performance and emission studies on an agriculture engine on neat Jatropha oil. J Mech Sci Technol. 2010; 24(2):529-35. https://doi.org/10.1007/s12206-010-0101-5 DOI: https://doi.org/10.1007/s12206-010-0101-5

Shi X, Yu Y, He H, Shuai S, Wang J, Li R. Emission characteristics using methyl soyate- ethanol-diesel fuel blends on a diesel engine. Fuel. 2005; 84(12-13):1543-9. https://doi.org/10.1016/j.fuel.2005.03.001 DOI: https://doi.org/10.1016/j.fuel.2005.03.001

Pinto AC, Guarieiro LLN, Rezende MJC, Ribeiro NM, Torres EA, Lopes WA, et al. Biodiesel: An Overview. J Braz Chem Soc. 2005; 16(6B):1313-30. https://doi.org/10.1590/S0103-50532005000800003 DOI: https://doi.org/10.1590/S0103-50532005000800003

Rakopoulos CD, Hountalas DT, Zannis TC, Levendis YA. Operational and environmental evaluation of diesel engines burning oxygen-enriched intake air or oxygenenriched fuels: A review. SAE Tech Paper Ser. 2004. https://doi.org/10.4271/2004-01-2924 DOI: https://doi.org/10.4271/2004-01-2924

Monyem A, Van Gerpen JH, Canakci M. The effect of timing and oxidation on emissions from biodiesel-fueled engines. Trans ASAE. 2001; 44(1):35-42. https://doi.org/10.13031/2013.2301 DOI: https://doi.org/10.13031/2013.2301

Shrivastava RK, Neeta S, Geeta G. Air pollution due to road transportation in India: A review on assessment and reduction strategies. Review Paper (NS2). J Environ Res. 2013; 8(1):69-77.

Sarathi R, Sindhu TK, Chakravarthy SR. Generation of nano aluminium powder through wire explosion process and its characterization. Mat Charact. 2007; 58(2):148-55. https://doi.org/10.1016/j.matchar.2006.04.014 DOI: https://doi.org/10.1016/j.matchar.2006.04.014

Hahma A, Gany A, Palovuori K. Combustion of activated aluminum. Combust Flame. 2006; 145(3):464-80. https://doi.org/10.1016/j.combustflame.2006.01.003 DOI: https://doi.org/10.1016/j.combustflame.2006.01.003