Analysis of Dielectric Properties of Carbon-Epoxy Composite Laminates
DOI:
https://doi.org/10.18311/jmmf/2023/45495Keywords:
Carbon Fiber, Composite Laminates, Electro-Spinning, Interleaving.Abstract
This study highlights the investigation of different dielectric properties of non-interleaved carbon-epoxy and interleaved carbon-epoxy-nylon 66 nanofiber composite laminates. Carbon-epoxy quasi-isotropic composite laminates were developed in an autoclave using A 24-ply AS4/3501-6. Nylon-66 solution of 12 wt.% was prepared in dissolving crystals of Nylon-66 in the 90% formic acid and chloroform mixture with the weight ratio of 75/25, respectively. The nano fabric was developed by electro-spinning technique using prepared Nylon-66 solution. The fabric of 0.7g/m2 average aerial density and composite ply (AS4/3501-6) of 260 g/m2 average aerial density were observed. The interleaved laminates were developed using a nylon-66 nanofiber layer between the adjacent laminate flies. Measurement of some of the dielectric properties like dielectric constant, tan δ, and ac conductivity of the interleaved composite laminates was done at the frequency of range from 20 Hz to 10 MHz. Improvement in the different dielectric properties of the interleaved composite laminates was observed with the addition of a small wt.% of Nylon-66 nano fabric between the alternate layers of carbon-epoxy composite. A possible mechanism involved in the improvement of dielectric properties in the nanocomposites was reported in this paper.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
References
Lee WI, Springer GS. Interaction of electromagnetic radiation with organic matrix composites. J Compos Mat. 1984; 18:357-86. https://doi.org/10.1177/002199838401800404 DOI: https://doi.org/10.1177/002199838401800404
Walker WF. The measurement of electrical conductivity in carbon/epoxy composite materials at UHF, IEEE Int Symp on Electromagnetic Compatibility. 1982; 157-9. https://doi. org/10.1109/ISEMC.1982.7567738 DOI: https://doi.org/10.1109/ISEMC.1982.7567738
Kuniya K, Arakawa H, Chiba A. Thermal conductivity, electrical conductivity and specific heat of copper-carbon fiber composite. J Japan Inst Met. 1985; 49:906-12. https://doi. org/10.2320/jinstmet1952.49.10_906 DOI: https://doi.org/10.2320/jinstmet1952.49.10_906
Holloway CL, Sarto MS, Johansson M. Analyzing carbonfiber composite materials with equivalent-layer models. IEEE Trans Electromagn Compat. 2005; 47:833-44. https:// doi.org/10.1109/TEMC.2005.854101 DOI: https://doi.org/10.1109/TEMC.2005.854101
Kim HC, See SK. Electrical properties of unidirectional carbon- epoxy composites in wide frequency band. J Phys D: Appl Phys. 1990; 23:916-21. https://doi.org/10.1088/0022- 3727/23/7/026 DOI: https://doi.org/10.1088/0022-3727/23/7/026
Park JB, Hwang TK, Kim HG, Doh YD. Experimental and numerical study of the electrical anisotropy in unidirectional carbon-fiber-reinforced polymer composites. Smart Materials and Structures. 2006; 57-66. https://doi. org/10.1088/0964-1726/16/1/006 DOI: https://doi.org/10.1088/0964-1726/16/1/006
Knibbs RH, Morris JB. The effects of fiber orientation on the physical properties of composites. Composites. 1974; 5:209-18. https://doi.org/10.1016/0010-4361(74)90141-4 DOI: https://doi.org/10.1016/0010-4361(74)90141-4
Galehdar, Nicholson KJ, Rowe WST, Ghorbani K. The conductivity of unidirectional and quasi-isotropic carbon fiber composites. Proceeding of the 40th EUMC 2010. 2010; 882-5.
Mehdipour A, Sebak AR, Trueman CW, Rosca ID, Hoa SV. Reinforced continuous carbon-fiber composites using multi-wall carbon nanotubes for wideband antenna applications. IEEE Trans on Antennas and Propagation. 2010; 58:2451-6. https://doi.org/10.1109/TAP.2010.2048862 DOI: https://doi.org/10.1109/TAP.2010.2048862
Shivakumar K, Lingaiah S, Chen H, Akangah P, Swaminathan G, Russell L. Polymer nano fabric interleaved composite laminates. AIAA JI. 2009; 47:1723-9. https://doi. org/10.2514/1.41791 DOI: https://doi.org/10.2514/1.41791
Akangah P, Lingaiah S, Shivakumar Kunigal N. Effect of nylon 66 nano-fiber interleaving on impact damage resistance of epoxy/carbon fiber composite laminates. Composite Structures. 2010; 92:1432-9. https://doi. org/10.1016/j.compstruct.2009.11.009 DOI: https://doi.org/10.1016/j.compstruct.2009.11.009
Panwar V, Sachdev VK, Mehra RM. Insulator conductor transition in low-density polyethylene–graphite composites. European Polym Journal. 2007; 43:573-85. https://doi. org/10.1016/j.eurpolymj.2006.11.017 DOI: https://doi.org/10.1016/j.eurpolymj.2006.11.017
Panwar V, Park JO, Park SH, Kumar S, Mehra RM. Electrical, dielectric, and electromagnetic shielding properties of polypropylene-graphite composites. J Appl Polym Sci. 2010; 115:1306-14. https://doi.org/10.1002/app.29702 DOI: https://doi.org/10.1002/app.29702
Patil AN, Patil MG, Patankar KK, Mathe VI, Mahajan RP, Patil SA. Dielectric behavior and a.c. conductivity in CuxFe3−xO4ferrite. Bulletin of Mater Sci. 2000; 23:447-52. https://doi.org/10.1007/BF02708397 DOI: https://doi.org/10.1007/BF02708397
Psarras GC, Manolakaki E, Tsangaris GM. Electrical relaxations in polymeric particulate composites of epoxy resin and metal particles. Composites Part A, Applied Science, and Manufacturing. 2002; 33:375-84. https://doi. org/10.1016/S1359-835X(01)00117-8 DOI: https://doi.org/10.1016/S1359-835X(01)00117-8
Nanda M, Chaudhary RNP, Tripathy DK. Dielectric relaxation of conductive carbon black reinforced chlorosulfonated polyethylene vulcanizates. Polym Compos. 2010; 31:152-62. https://doi.org/10.1002/pc.20779 DOI: https://doi.org/10.1002/pc.20779
Chen CK, Liepins R. Electrical Properties of Polymers: Chemical Principles. Hansergardner publisher, Munich. 1987; 92.