Recent Advancements in Developing Metal Matrix Composites with Arc-Assisted Cladding Techniques: A Review

Jump To References Section

Authors

  • Department of Mechanical Engineering, National Institute of Technology Patna, Patna - 800005, Bihar ,IN
  • Department of Mechanical Engineering, National Institute of Technology Patna, Patna - 800005, Bihar ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/45536

Keywords:

Cladding, Materials, Metal Matrix Composite, Properties of Metal, Review.

Abstract

Cladding is one of the flagship technologies of improving the surface dependent properties of metals. Heat-assisted technique of reinforcing foreign precursor material into substrate such as tungsten inert gas cladding, laser cladding and plasma transferred arc cladding are reviewed and presented in this paper. A comprehensive study of the research work of the present era in this particular field is also discussed here. Selection of different types of substrate material, reinforcing metal powder, type of heat source, the method of preparing coating powder (in paste form) and impurity-free substrate material respectively prior to cladding is also detailed after thorough investigation of different research papers. The type of tests which has to be done after cladding to evaluate the surface dependent properties are also discussed in this paper.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-30

How to Cite

Singh, K. K., & Das, A. K. (2023). Recent Advancements in Developing Metal Matrix Composites with Arc-Assisted Cladding Techniques: A Review. Journal of Mines, Metals and Fuels, 71(12B), 96–101. https://doi.org/10.18311/jmmf/2023/45536

Issue

Section

Articles

 

References

Kumar R, Das AK. Tribological behaviour of TiB2 ceramic based composite coating deposited on stainless steel AISI 304 by Gas Tungsten Arc (GTA) cladding process. Surf Topogr Metrol Prop. 2022; 10:35012. https://doi. org/10.1088/2051-672X/ac8365 DOI: https://doi.org/10.1088/2051-672X/ac8365

Kilinc B, Durmaz M, Abakay E, Sen U, Sen S. Wear behaviour of the surface alloyed AISI 1020 steel with Fe-Nb-B by TIG welding technique. AIP Conf Proc. 2015; 1653:1- 7. https://doi.org/10.1063/1.4914249 DOI: https://doi.org/10.1063/1.4914249

Das AK, Kumar S, Chaubey MK, Alam W. Tungsten Inert Gas (TIG) cladding of TiC-Fe metal matrix composite coating on AISI 1020 steel substrate. Adv Mater Res. 2020; 22:19-26. https://doi.org/10.4028/www.scientific. net/AMR.1159.19 DOI: https://doi.org/10.4028/www.scientific.net/AMR.1159.19

Iravani M, Khajepour A, Corbin S, Esmaeili S. Pre-placed laser cladding of metal matrix diamond composite on mild steel. Surf Coat Technol. 2011; 19:2089-97. https:// doi.org/10.1016/j.surfcoat.2011.09.027 DOI: https://doi.org/10.1016/j.surfcoat.2011.09.027

Deng H, Shi H, Tsuruoka S. Influence of coating thickness and temperature on mechanical properties of steel deposited with Co-based alloy hard facing coating. Surf Coat Technol. 2010; 204:3927-61. https://doi. org/10.1016/j.surfcoat.2010.05.013 DOI: https://doi.org/10.1016/j.surfcoat.2010.05.013

Sekhar BR, Nayak RK, Rout SR. Wear characteristic of TiC coated AISI 1020 mild steel fabricated by TIG cladding method. Mater Today Proc. 2020. https://doi. org/10.1016/j.matpr.2020.02.466 DOI: https://doi.org/10.1016/j.matpr.2020.02.466

Alam S, Das AK. Recent trends in surface cladding on AISI 1045 steel substrate: A Review. Mater Res Proc. 2022; 22:94-101. https://doi.org/10.21741/9781644901878-13 DOI: https://doi.org/10.21741/9781644901878-13

Hou QY. Microstructure and wear resistance of steel matrix composite coating reinforced by multiple ceramic particulates using SHS reaction of Al-TiO2-B2O3 system during plasma transferred arc overlay welding. Surf Coat Technol. 2013; 223:113-35. https://doi.org/10.1016/j. surfcoat.2013.03.043 DOI: https://doi.org/10.1016/j.surfcoat.2013.03.043

Korkut MH, Yilmaz O, Buytoz S. Effect of aging on the microstructure and toughness of the interface zone of a Gas Tungsten Arc (GTA) synthesized Fe-Cr-Si-Mo-C coated low carbon steel. Surf Coat Technol. 2002; 157:5- 13. https://doi.org/10.1016/S0257-8972(02)00041-5 DOI: https://doi.org/10.1016/S0257-8972(02)00041-5

Juang SC, Tarng YS. Process parameter selection for optimizing the weld pool geometry in the tungsten inert gas welding of stainless steel. J Mater Process Technol. 2002; 122:33-37. https://doi.org/10.1016/S0924- 0136(02)00021-3 DOI: https://doi.org/10.1016/S0924-0136(02)00021-3

Kumar S, Das AK. Enhancement of tribological and mechanical properties of TiB2-Co cladded layer developed by tungsten inert gas cladding on AISI 1020 Steel. Surf Topogr Metrol Prop. 2022; 20:35036. https://doi. org/10.1088/2051-672X/ac90d9 DOI: https://doi.org/10.1088/2051-672X/ac90d9

Kumar S, Das AK. Evaluation of mechanical properties of TiB2-TiO2 ceramic composite coating on AISI 1020 mild steel by TIG cladding. Eng Res Express. 2022; 4(2022):015034. https://doi.org/10.1088/2631-8695/ ac5ae7 DOI: https://doi.org/10.1088/2631-8695/ac5ae7

Mahmoud E, Khan SZ, Ejaz M. Laser surface cladding of mild steel with 316L stainless steel for anti-corrosion applications. Mater Today Proc.

Masanta M, Shariff SM, Choudhury AR. A comparative study of the tribological performances of laser-clad TiB2-TiC-Al2O3 composite coatings on AISI 1020 and AISI 304 substrates. Wear. 2011; 271(2011):1124-33. https://doi.org/10.1016/j.wear.2011.05.009 DOI: https://doi.org/10.1016/j.wear.2011.05.009

Majumdar JD, Chandra BR, Nath AK, Manna I. Studies on compositionally graded silicon carbide dispersed composite surface on mild steel developed by laser surface cladding. J Mater Process Technol. 2008; 203:505-17. https://doi.org/10.1016/j.jmatprotec.2007.10.056 DOI: https://doi.org/10.1016/j.jmatprotec.2007.10.056

Oliveira D, Vilar R, Feder CG. High-temperature behaviour of plasma transferred arc and laser co-based alloy coatings. Appl Surf Sci. 2002; 201:154-60. https://doi. org/10.1016/S0169-4332(02)00621-9 DOI: https://doi.org/10.1016/S0169-4332(02)00621-9

Oliveira D, Tigrinho JJ, Takeyama RR. Coatings enrichment by carbide dissolution. Surf Coat Technol. 2008; 202:4660-65. https://doi.org/10.1016/j.surfcoat. 2008.03.034 DOI: https://doi.org/10.1016/j.surfcoat.2008.03.034

Gatto A, Bassoli E, Fornari M. Plasma Transferred Arc deposition of powdered high performances alloys: process parameters optimization as a function of alloy and geometrical configuration. Surf Coat Technol. 2004; 187:265-71. https://doi.org/10.1016/j.surfcoat. 2004.02.013 DOI: https://doi.org/10.1016/j.surfcoat.2004.02.013

Huang ZY, Hou QY, Wang P. Microstructure and properties of Cr3C2-modified nickel-based alloy coating deposited by plasma transferred arc process. Surf Coat Technol. 2008; 202:2993-99. https://doi.org/10.1016/j. surfcoat.2007.10.033 DOI: https://doi.org/10.1016/j.surfcoat.2007.10.033

Cheng J, Liu D, Liang X, Chen Y. Evolution of microstructure and mechanical properties of in situ synthesized TiC-TiB2/CoCrCuFeNi high entropy alloy coatings. Surf Coat Technol. 2015; 281:109-116. https://doi. org/10.1016/j.surfcoat.2015.09.049 DOI: https://doi.org/10.1016/j.surfcoat.2015.09.049

Zhu S, Yu Y, Zhang B, et al. Microstructure and wear behaviour of in-situ TiN-Al2O3 reinforced CoCrFeNiMn high-entropy alloys composite coatings fabricated by plasma cladding. Mater Lett. 2020; 272:127870. https:// doi.org/10.1016/j.matlet.2020.127870 DOI: https://doi.org/10.1016/j.matlet.2020.127870