Analysis of Surface Roughness, Cutting Force and Cutting Fluid Consumption in Turning Operation with and Without Use of Cutting Fluid Optimizer

Jump To References Section

Authors

  • Centre for Advanced Studies, Lucknow - 226031, Uttar Pradesh ,IN
  • Department of Mechanical Engineering, Indian Institute of Technology (ISM), Dhanbad - 826004, Jharkhand ,IN
  • Centre for Advanced Studies, Lucknow - 226031, Uttar Pradesh ,IN
  • Centre for Advanced Studies, Lucknow - 226031, Uttar Pradesh ,IN
  • Centre for Advanced Studies, Lucknow - 226031, Uttar Pradesh ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/45583

Keywords:

Coolant Regulation, Cutting Fluid Optimizer, Grey Relational Analysis, Taguchi.

Abstract

In the present work, cutting fluid consumption, surface roughness, component of forces and tool temperature were analyzed with and without online regulation cutting fluid. Cutting Fluid Optimizer (CFO) is a device that automatically regulates the supply of cutting fluid based on the temperature of the tool tip generated during the machining. Taguchi orthogonal L9 is employed for design of experiments using MINITAB-21. Every experiment was conducted on mild steel work material with use of a tungsten carbide tool insert on the conventional lathe. The best parameter is determined via grey relational analysis. Optimal condition of regulation of coolant with the Cutting Fluid Optimizer (CFO) and non-regulation of coolant with the cutting fluid optimizer are compared. Minimum surface roughness, machining forces, tool–work piece temperature was recorded in case of non-regulation of cutting fluid with the CFO at the cost of the consuming large amount cutting fluid. However, regulation of cutting fluid with the CFO was able to reduce coolant consumption by 15.3% but significantly resulting 3.3 % increase in component of forces, surface roughness and tool-work piece temperature.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-30

How to Cite

Sisodia, N., Singh, M., Singh, R. K., Sharma, A. K., & Dixit, A. R. (2023). Analysis of Surface Roughness, Cutting Force and Cutting Fluid Consumption in Turning Operation with and Without Use of Cutting Fluid Optimizer. Journal of Mines, Metals and Fuels, 71(12B), 177–185. https://doi.org/10.18311/jmmf/2023/45583

Issue

Section

Articles

 

References

Çakır O, Yardimeden A, Ozben T, Kilickap E. Selection of cutting fluids in machining processes. J Achiev Mater Manuf Eng. 2007; 25(2):99-102.

Debnath S, Reddy MM, Yi QS. Environmental friendly cutting fluids and cooling techniques in machining: A review. J Clean Prod. 2014; 83:33-47. Doi:10.1016/j. jclepro.2014.07.071 DOI: https://doi.org/10.1016/j.jclepro.2014.07.071

Faga MG, Priarone PC, Robiglio M, Settineri L, Tebaldo V. Technological and sustainability implications of dry, near-dry, and wet turning of Ti-6Al-4V alloy. Int J Precis Eng Manuf Green Technol. 2017; 4(2):129-68. Doi:10.1007/s40684-017-0016-z DOI: https://doi.org/10.1007/s40684-017-0016-z

Kazeem RA, Fadare DA, Ikumapayi OM, et al. Advances in the application of vegetable-oil-based cutting fluids to sustainable machining operations: A review. Lubricants. 2022; 10(4). Doi:10.3390/lubricants10040069 DOI: https://doi.org/10.3390/lubricants10040069

Shokoohi Y, Khosrojerdi E, Rassolian Shiadhi B. Machining and ecological effects of a newly developed cutting fluid in combination with different cooling techniques on turning operation. J Clean Prod. 2015; 94:330-9. Doi:10.1016/j.jclepro.2015.01.055 DOI: https://doi.org/10.1016/j.jclepro.2015.01.055

Lahres M, Müller-Hummel P, Doerfel O. Applicability of different hard coatings in dry milling aluminium alloys. Surf Coatings Technol. 1997; 91(1-2):116-37. Doi:10.1016/S0257-8972(96)03121-0 DOI: https://doi.org/10.1016/S0257-8972(96)03121-0

Dhar NR, Kamruzzaman M, Ahmed M. Effect of Minimum Quantity Lubrication (MQL) on tool wear and surface roughness in turning AISI-4340 steel. J Mater Process Technol. 2006; 172(2):299-304. Doi:10.1016/j.jmatprotec. 2005.09.022 DOI: https://doi.org/10.1016/j.jmatprotec.2005.09.022

Lee WY, Kim KW, Sin HC. Cutting conditions for finish turning process aiming: The use of dry cutting. Int J Mach Tools Manuf. 2002; 42(8):899-904. Doi:10.1016/ S0890-6955(02)00028-7 DOI: https://doi.org/10.1016/S0890-6955(02)00028-7

Sreejith PS, Ngoi BK. Dry machining: Machining of the future. J Mater Process Technol. 2000; 101(1):287-91. Doi:10.1016/S0924-0136(00)00445-3 DOI: https://doi.org/10.1016/S0924-0136(00)00445-3

Khan MM, Mithu MA, Dhar NR. Effects of minimum quantity lubrication on turning AISI 9310 alloy steel using vegetable oil-based cutting fluid. J Mater Process Technol. 2009; 209:5573-83. Doi:10.1016/j.jmatprotec. 2009.05.014 DOI: https://doi.org/10.1016/j.jmatprotec.2009.05.014

Khan MM, Dhar NR. Performance evaluation of minimum quantity lubrication by vegetable oil in terms of cutting force, cutting zone temperature, tool wear, job dimension and surface finish in turning AISI-1060 steel. J Zhejiang Univ Sci A. 2006; 7(11):1790-9. doi:10.1631/ jzus.2006.A1790 DOI: https://doi.org/10.1631/jzus.2006.A1790

Hadad M, Sadeghi B. Minimum Quantity Lubrication (MQL) turning of AISI 4140 steel alloy. J Clean Prod. 2013; 54:332-75. Doi:10.1016/j.jclepro.2013.05.011 DOI: https://doi.org/10.1016/j.jclepro.2013.05.011

Zhang S, Li JF, Wang YW. Tool life and cutting forces in end milling Inconel 718 under dry and minimum quantity cooling lubrication cutting conditions. J Clean Prod. 2012; 32:81-8. Doi:10.1016/j.jclepro.2012.03.014 DOI: https://doi.org/10.1016/j.jclepro.2012.03.014

Sarikaya M, Güllü A. Taguchi design and response surface methodology-based analysis of machining parameters in CNC turning under MQL. J Clean Prod. 2014; 65:604- 20. Doi:10.1016/j.jclepro.2013.08.040 DOI: https://doi.org/10.1016/j.jclepro.2013.08.040

Devillez A, Schneider F, Dominiak S, Dudzinski D, Larrouquere D. Cutting forces and wear in dry machining of Inconel 718 with coated carbide tools. Wear. 2007; 262(7-8):931-73. Doi:10.1016/j.wear.2006.10.009 DOI: https://doi.org/10.1016/j.wear.2006.10.009

Devillez A, Le Coz G, Dominiak S, Dudzinski D. Dry machining of Inconel 718, workpiece surface integrity. J Mater Process Technol. 2011; 211(10):1590-8. Doi:10.1016/j.jmatprotec.2011.04.011 DOI: https://doi.org/10.1016/j.jmatprotec.2011.04.011

Xavior MA, Adithan M. Determining the influence of cutting fluids on tool wear and surface roughness during turning of AISI 304 austenitic stainless steel. J Mater Process Technol. 2009; 209(2):900-9. Doi:10.1016/j. jmatprotec.2008.02.068 DOI: https://doi.org/10.1016/j.jmatprotec.2008.02.068

Navas VG, Gonzalo O, Bengoetxea I. Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int J Mach Tools Manuf. 2012; 61:48-57. Doi:10.1016/j.ijmachtools.2012.05.008 DOI: https://doi.org/10.1016/j.ijmachtools.2012.05.008

Debnath S, Reddy MM, Yi QS. Influence of cutting fluid conditions and cutting parameters on surface roughness and tool wear in the turning process using the Taguchi method. Meas J Int Meas Confed. 2016; 78:111-20. Doi:10.1016/j.measurement.2015.09.011 DOI: https://doi.org/10.1016/j.measurement.2015.09.011

Singh M, Sharma AK, Dixit AR. Method and device for optimizing cutting fluid in metal cutting operations. IND Patent App no.202111033458. 2021.

Jagatheesan K, Babu K. Taguchi optimization of minimum quantity lubrication turning of AISI-4320 steel using biochar nanofluid. Biomass Convers Biorefinery. 2023; 13(2):927-61. Doi:10.1007/s13399-020-01111-3 DOI: https://doi.org/10.1007/s13399-020-01111-3

Girish BM, Siddesh HS, Satish BM. Taguchi grey relational analysis for parametric optimization of severe plastic deformation process. SN Appl Sci. 2019; 1(8):1- 11. Doi:10.1007/s42452-019-0982-6 DOI: https://doi.org/10.1007/s42452-019-0982-6

Abhang LB, Hameedullah M. Determination of optimum parameters for multi-performance characteristics in turning by using grey relational analysis. Int J Adv Manuf Technol. 2012; 63(1-4):13-24. Doi:10.1007/ s00170-011-3857-6 DOI: https://doi.org/10.1007/s00170-011-3857-6

Pcet L. Optimization of cutting parameters in high-speed turning by grey relational analysis. Optimization. 2013; 3(1):832-41.