Physio-Mechanical Properties and Microstructural Characteristics of Friction Stir Welded Aluminium and Copper Plates Using Conical Unthreaded Tool

Jump To References Section

Authors

  • Visvesvaraya Technological University, CMR Institute of Technology, Bengaluru – 560037, Karnataka ,IN
  • BPES College of Engineering, Mandya – 571401, Karnataka ,IN
  • National Institute of Engineering, Mysuru – 570008, Karnataka ,IN
  • REVA University, Sathanur, Bengaluru – 560064, Karnataka ,IN

DOI:

https://doi.org/10.18311/jmmf/2023/45588

Keywords:

Friction Stir Welding, Heat Affected Zone (HAZ), Stir Zone (SZ), Thermo-Mechanical Affected Zone (TMAZ).

Abstract

Friction Stir Welding (FSW) is a type of welding used to join materials for high strength applications. FSW is a well-liked solid-state welding technique for joining aluminum alloys and other non-ferrous materials in the aerospace, automotive, and marine industries. Pure copper and aluminum from the 6082 series were welded together using a specially designed milling machine. Tests for hardness, flexural rigidity, and impact are performed to assess the welding strength. Material flow and weld defects have been investigated by analyzing the microstructure of the weld junction. The modified vertical milling machine has been used to execute FSW of pure copper and aluminum plates. The aim is to explore the produced welded joints and to comprehend the difficulties encountered while utilizing milling machines as a FSW equipment. Similarly, to optimize the welding parameters in order to accomplish sound welding. FSW can be carried out on a milling machine because the flexural strength of a conical unthread thread tool is 108.58N/mm2 and 92.16N/mm2, respectively, at rotational speeds of 500 rpm and 1000 rpm with welding feed rates of 16 mm/min and 50 mm/min.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2023-12-30

How to Cite

Harisha, P., Nanjunadaswamy, H. M., Divakar, H. N., & Raju, B. S. (2023). Physio-Mechanical Properties and Microstructural Characteristics of Friction Stir Welded Aluminium and Copper Plates Using Conical Unthreaded Tool. Journal of Mines, Metals and Fuels, 71(12B), 227–234. https://doi.org/10.18311/jmmf/2023/45588

Issue

Section

Articles

 

References

Luo H, Zhao F, Guo S, Yu C, Liu G, Wu T. Mechanical performance research of friction stir welding robot for aerospace applications. Int J Adv Robot Syst. 2021; 18(1):172988142199654. https://doi. org/10.1177/1729881421996543 DOI: https://doi.org/10.1177/1729881421996543

Li K, Jarrar F, Sheikh-Ahmad J, Ozturk F. Using coupled Eulerian Lagrangian formulation for accurate modeling of the friction stir welding process. Procedia Eng. 2017; 207:574-9. https://doi.org/10.1016/j.proeng. 2017.10.1023 DOI: https://doi.org/10.1016/j.proeng.2017.10.1023

Chularis AA, Rzaev RA, Syndetov MKh. Friction stir welding of aluminium and copper alloys. Weld Int. 2020; 34(4-6):230-41. https://doi.org/10.1080/09507116.2021. 1906576 DOI: https://doi.org/10.1080/09507116.2021.1906576

Ramesh B, Kumar SS, Saravanan I, Elsheikh AH, Bruce AR, Karthikeyan T. Investigations of friction stir welding for AA 6082 with various parameters. AIP Conf Proc; 2021. https://doi.org/10.1063/5.0072768 DOI: https://doi.org/10.1063/5.0072768

Khodir SA, Ahmed MMZ, Ahmed E, Mohamed SMR, Abdel-Aleem H. Effect of intermetallic compound phases on the mechanical properties of the dissimilar Al/Cu friction stir welded joints. J Mater Eng Perform. 2016; 25(11):4637-48. https://doi.org/10.1007/s11665- 016-2314-y DOI: https://doi.org/10.1007/s11665-016-2314-y

Elmetwally HT, Allah HNS, Abd-Elhady MS, Abdel- Magied RK. Optimum combination of rotational and welding speeds for welding of Al/Cu-butt joint by friction stir welding. Int J Adv Manuf Tech. 2020; 110(1- 2):163-75. https://doi.org/10.1007/s00170-020-05815-8 DOI: https://doi.org/10.1007/s00170-020-05815-8

Peng P, Wang K, Wang W, Yang T, Liu Q, Zhang T, et al. Intermetallic compounds: Formation mechanism and effects on the mechanical properties of friction stir lap welded dissimilar joints of magnesium and aluminum alloys. Mater Sci Eng. 2021; 802:140554-4. https://doi. org/10.1016/j.msea.2020.140554 DOI: https://doi.org/10.1016/j.msea.2020.140554

Baghel SS, Soni PK. An experimental study of friction stir welding parameters effect on joint properties of aluminium alloy and copper plate. Mater Res Express. 2023; 10(1):016502. https://doi.org/10.1088/2053-1591/ acae54 DOI: https://doi.org/10.1088/2053-1591/acae54

Harisha P, Nanjundaswamy HM, Divakar HN, Krishnan D. Tensile properties of aluminium and copper alloys friction stir welded joints. Mater Today Proc. 2022; 54:223-7. https://doi.org/10.1016/j.matpr.2021.08.297 DOI: https://doi.org/10.1016/j.matpr.2021.08.297

Leon SLJ, Bharathiraja G, Vijayarangan J. Experimental analysis on friction stir welding using flat-faced pins in AA2024-T3 plate. FME Transact. 2021; 49(1):78-86. DOI: https://doi.org/10.5937/fme2101078S

Leon SLJ, Bharathiraja G, Vijayarangan J. Experimental investigations on mechanical properties of friction stir welded AA2024-T3 joints. FME Transact. 2021; 49(2):511-17. DOI: https://doi.org/10.5937/fme2102511L

Fujii H, Cui L, Maeda M, Nogi K. Effect of tool shape on mechanical properties and microstructure of friction stir welded aluminum alloys. Mater Sci Eng A. 2006; 419(1- 2):25-31. https://doi.org/10.1016/j.msea.2005.11.045 DOI: https://doi.org/10.1016/j.msea.2005.11.045

Kumar N, Yuan W, Mishra RS. Friction stir weld. dissimilar alloy. Friction stir welding of dissimilar alloys and materials. Friction Stir Welding and Processing. 2015. p. 1-13. https://doi.org/10.1016/B978-0-12-802418- 8.00001-1 DOI: https://doi.org/10.1016/B978-0-12-802418-8.00001-1

Sahlot P, Singh AK, Badheka VJ, Arora A. Friction stir welding of copper: Numerical modeling and validation. Trans Indian Inst Met. 2019; 72(5):1339-47. https://doi. org/10.1007/s12666-019-01629-9 DOI: https://doi.org/10.1007/s12666-019-01629-9

He X, Zhao L, Deng C, Xing B, Gu F, Ball A. Self-piercing riveting of similar and dissimilar metal sheets of aluminum alloy and copper alloy. Mater Des. 2015; 65:923-33. https://doi.org/10.1016/j.matdes.2014.10.002 DOI: https://doi.org/10.1016/j.matdes.2014.10.002

Sun H, Zhou Q, Zhu J, Peng Y. Analysis on the fracture of Al-Cu dissimilar materials friction stir welding lap joint. J Mater Eng Perform. 2017; 26(12):5715-22. https://doi. org/10.1007/s11665-017-3029-4 DOI: https://doi.org/10.1007/s11665-017-3029-4

Akbari ME, Behnagh RA, Dadvand A. Effect of materials position on friction stir lap welding of Al to Cu. Sci Technol Weld Join. 2012; 17(7):581-8. https://doi.org/10 .1179/1362171812Y.0000000049 DOI: https://doi.org/10.1179/1362171812Y.0000000049

Hou W, Shen Z, Huda N, Oheil M, Shen Y, Hamid Jahed, et al. Enhancing metallurgical and mechanical properties of friction stir butt welded joints of Al–Cu via cold sprayed Ni interlayer. Mater Sci Eng A. 2021; 809:140992- 2. https://doi.org/10.1016/j.msea.2021.140992 DOI: https://doi.org/10.1016/j.msea.2021.140992

Du Y, Mukherjee T, Mitra P, DebRoy T. Machine learning based hierarchy of causative variables for tool failure in friction stir welding. Acta Mater. 2020; 192:67-77. https://doi.org/10.1016/j.actamat.2020.03.047 DOI: https://doi.org/10.1016/j.actamat.2020.03.047

Garg A, Bhattacharya A. Strength and failure analysis of similar and dissimilar friction stir spot welds: Influence of different tools and pin geometries. Mater Des. 2017; 127:272-86. https://doi.org/10.1016/j.matdes. 2017.04.084 DOI: https://doi.org/10.1016/j.matdes.2017.04.084