Traditional Medicine - A Gold Mine in the Treatment of Cancer
DOI:
https://doi.org/10.18311/jnr/2022/30377Keywords:
Astragalus membranaceus, Cancer, Cancerous Cells, Panax ginseng, Thea sinensis, Withania somnifera, Zingiber officinaleAbstract
The prevalence of non-communicable diseases has been on the rise in the last 2 decades. Amongst which, cancer bags the top spot for being unforgivingly ruthless and is the leading cause of the incessant rise in fatalities globally. The failure of current therapeutic approaches is subject to multiple factors. One of them is their inability to effectively contain or kill cancerous cells that persist. Their unbiased nature, due to which they kill healthy as well as cancerous cells, is one of the biggest drawbacks of the currently available therapeutic options. Recent advances have made targeted therapy a possibility but its high cost renders it an unviable option for a large portion of the affected population. The above mentioned drawbacks of the currently used treatments push our attention towards finding better alternatives to effectively deal with this pestilent disease. Herbal drugs offer tremendous hope and are a potential gold mine that could provide effective treatment options to deal with cancer. In this review, we shed light on a few encouraging herbs like Withania somnifera, Astragalus membranaceus, Zingiber officinale, Thea sinensis, Panax ginseng, Hypericum perforatum, Allium cepa and Allium sativum that hold the potential to provide effective alternative therapeutic interventions for the prevention and management of cancer.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Rajesh A. Maheshwari, Jitin Raghunathan Nair, Sarthak P. Mehta, Archie R. Maheshwari, Ramachandran Balaraman
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2022-07-16
Published 2022-12-16
References
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018; 68(6):394-424. https://doi.org/10.3322/caac.21492 DOI: https://doi.org/10.3322/caac.21492
Weinberg RA. How cancer arises. Sci Am. 1996; 275(3):62 70. https://doi.org/10.1038/scientificamerican0996-62 DOI: https://doi.org/10.1038/scientificamerican0996-62
Nagarajan A, Malvi P, Wajapeyee N. Oncogene-directed alterations in cancer cell metabolism. Trends Cancer. 2016; 2(7):365-77. https://doi.org/10.1016/j.trecan.2016.06.002 DOI: https://doi.org/10.1016/j.trecan.2016.06.002
Curtin JA, Fridlyand J, Kageshita T, Patel HN, Busam KJ, Kutzner H, et al. Distinct sets of genetic alterations in melanoma. New Eng J Med. 2005; 353(20):2135-47. https://doi.org/10.1056/NEJMoa050092 DOI: https://doi.org/10.1056/NEJMoa050092
Neri A, Knowles DM, Greco A, McCormick F, Dalla-Favera R. Analysis of RAS oncogene mutations in human lymphoid malignancies. Proc Natl Acad Sci. 1988; 85(23):9268-72. https://doi.org/10.1073/pnas.85.23.9268 DOI: https://doi.org/10.1073/pnas.85.23.9268
Dang CV. MYC on the path to cancer. Cell. 2012; 149:22-35. https://doi.org/10.1016/j.cell.2012.03.003 DOI: https://doi.org/10.1016/j.cell.2012.03.003
Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Sci. 1984; 224(4653):1121-4. https://doi.org/10.1126/science.6719137 DOI: https://doi.org/10.1126/science.6719137
Kohl NE, Gee CE, Alt FW. Activated expression of the N-myc gene in human neuroblastomas and related tumors. Sci. 1984; 226(4680):1335-7. https://doi.org/10.1126/science. 6505694 DOI: https://doi.org/10.1126/science.6505694
Park S, Chung S, Kim KM, Jung KC, Park C, Hahm ER, Yang CH. Determination of binding constant of transcription factor myc-max/max-max and E-box DNA: the effect of inhibitors on the binding. Biochim Biophys Acta. 2004; 1670(3):217-28. https://doi.org/10.1016/j.bbagen. 2003.12.007 DOI: https://doi.org/10.1016/j.bbagen.2003.12.007
Shtivelman E, Lifshitz B, Gale RP, Canaani E. Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature. 1985; 315(6020):550-4. https://doi. org/10.1038/315550a0 DOI: https://doi.org/10.1038/315550a0
Campbell ML, Li W, Arlinghaus RB. P210 BCR-ABL is complexed to P160 BCR and ph-P53 proteins in K562 cells. Oncogene. 1990; 5(5):773-6.
Satoskar RS. Antimitotic Natural Products. 24th edition, Section 12, Elsevier publishing. pp 836.
Hahm ER, Lee J, Huang Y, Singh SV. Withaferin a suppresses estrogen receptor-alpha expression in human breast cancer cells. Mol Carcinog. 2011; 50:614-24. https://doi. org/10.1002/mc.20760 DOI: https://doi.org/10.1002/mc.20760
Szarc Vel Szic K, Op De Beeck K, Ratman D, Wouters A, Beck IM, Declerck K, et al. Pharmacological levels of Withaferin A (Withania somnifera) trigger clinically relevant anticancer effects specific to triple negative breast cancer cells. PLoS One. 2014; 9:e87850. https://doi.org/10.1371/journal. pone.0087850 DOI: https://doi.org/10.1371/journal.pone.0087850
Mohan R, Bargagna-Mohan P. The Use of Withaferin A to Study Intermediate Filaments. Methods Enzymol 2016; 568:187-218. https://doi.org/10.1016/bs.mie.2015.09.025 DOI: https://doi.org/10.1016/bs.mie.2015.09.025
Widodo N, Kaur K, Shrestha BG, Takagi Y, Ishii T, Wadhwa R, et al. Selective killing of cancer cells by leaf extract of Ashwagandha: Identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin Cancer Res. 2007; 13:2298-2306. https://doi.org/10.1158/1078- 0432.CCR-06-0948 DOI: https://doi.org/10.1158/1078-0432.CCR-06-0948
Hahm ER, Moura MB, Kelley EE, Van Houten B, Shiva S, Singh SV. Withaferin A-induced apoptosis in human breast cancer cells is mediated by reactive oxygen species. PLoS ONE. 2011; 6:e23354. https://doi.org/10.1371/journal. pone.0023354 DOI: https://doi.org/10.1371/journal.pone.0023354
Ghosh K, De S, Das S, Mukherjee S, Sengupta Bandyopadhyay S. Withaferin A Induces ROS-Mediated Paraptosis in Human Breast Cancer Cell-Lines MCF-7 and MDA-MB-231. PLoS ONE. 2016; 11:e0168488. https://doi. org/10.1371/journal.pone.0168488 DOI: https://doi.org/10.1371/journal.pone.0168488
Choi BY, Kim BW. Withaferin-A Inhibits Colon Cancer Cell Growth by Blocking STAT3 Transcriptional Activity. J Cancer Prev. 2015; 20:185-92. https://doi.org/10.15430/ JCP.2015.20.3.185 DOI: https://doi.org/10.15430/JCP.2015.20.3.185
Koduru S, Kumar R, Srinivasan S, Evers MB, Damodaran C. Notch-1 inhibition by Withaferin-A: A therapeutic target against colon carcinogenesis. Mol Cancer Ther. 2010; 9:202- 210. https://doi.org/10.1158/1535-7163.MCT-09-0771 DOI: https://doi.org/10.1158/1535-7163.MCT-09-0771
Chandrasekaran B, Pal D, Kolluru V, Tyagi A, Baby B, Dahiya NR, et al. The Chemopreventive effect of Withaferin A on spontaneous and Inflammation-associated colon carcinogenesis models. Carcinogenesis. 2018; 39(12):1537-47. https://doi.org/10.1093/carcin/bgy109 DOI: https://doi.org/10.1093/carcin/bgy109
Suman S, Das TP, Moselhy J, Pal D, Kolluru V, Alatassi H, et al. Oral administration of withaferin A inhibits carcinogenesis of prostate in TRAMP model. Oncotarget. 2016; 7:53751-61. https://doi.org/10.18632/oncotarget.10733 DOI: https://doi.org/10.18632/oncotarget.10733
Moselhy J, Suman, S, Alghamdi M, Chandarasekharan B, Das TP, Houda A, et al. Withaferin A Inhibits Prostate Carcinogenesis in a PTEN-deficient Mouse Model of Prostate Cancer. Neoplasia. 2017; 19:451-59. https://doi. org/10.1016/j.neo.2017.04.005 DOI: https://doi.org/10.1016/j.neo.2017.04.005
Das TP, Suman S, Alatassi H, Ankem MK, Damodaran C. Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer. Cell Death Dis. 2016; 7:e2111. https://doi.org/10.1038/cddis.2015.403 DOI: https://doi.org/10.1038/cddis.2015.403
Nakano T, Kanai Y, Amano Y, Yoshimoto T, Matsubara D, Shibano T, et al. Establishment of highly metastatic KRAS mutant lung cancer cell sublines in long-term threedimensional low attachment cultures. PLoS ONE. 2017; 12:e0181342. https://doi.org/10.1371/journal.pone.0181342 DOI: https://doi.org/10.1371/journal.pone.0181342
Kakar SS, Ratajczak MZ, Powell KS, Moghadamfalahi M, Miller DM, Batra SK, et al. Withaferin A alone and in combination with cisplatin suppresses growth and metastasis of ovarian cancer by targeting putative cancer stem cells. PLoS ONE. 2014; 9:e107596. https://doi.org/10.1371/journal.pone.0107596 DOI: https://doi.org/10.1371/journal.pone.0107596
Kakar SS, Worth CA, Wang Z, Carter K, Ratajczak M, Gunjal P. DOXIL when combined with Withaferin A (WFA) targets ALDH1 positive cancer stem cells in ovarian cancer. J Cancer Stem Cell Res. 2016; 4:e1002. https://doi.org/10.14343/JCSCR.2016.4e1002 DOI: https://doi.org/10.14343/JCSCR.2016.4e1002
Beinfeield H, Korngold E. The cauldron of Chinese herbs. Heaven Earth. 1991. 265-321.
Wang D, Shen W, Tian Y, Sun Z, Jiang C, Yuan S. Protective effect of active components extracted from radix Astragali on human erythrocyte membrane damages caused by reactiveoxygen species. China J Chin Mat Med. 1996; 21(12):746-8.
Sun Y, Hong WJ, Deng J. 10-year follow-up study of cancer patients with fu-zheng therapy. Chin J Modern Dev Tradit Med. 1987; 7(12):712-7.
Gupta S, Agarwal SS, Epstein LB, Fernandez G, Good RA. Panax ginseng: A new mitogen and interferon inducer. Clin Res. 1980; 504A:28-32.
Duan P, Wang ZM. Clinical study on effect of Astragalus in efficacy enhancing and toxicity reducing of chemotherapy in patients of malignant tumor. Chin J Integr Med. 2002; 22(7):515-7.
Li NQ. Clinical and experimental study on shen-qi injection with chemotherapy in the treatment of malignant tumor of digestive tract. Chin J Integr Med. 1992; 12(10):588-92.
Semwal RB, Semwal DK, Combrinck S, Viljoen AM. Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochem. 2015; 117:554-68. https://doi.org/10.1016/j.phytochem.2015.07.012 DOI: https://doi.org/10.1016/j.phytochem.2015.07.012
Prasad S, Tyagi AK. Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterol Res Pract. 2015. Article ID 142979. https://doi.org/10.1155/2015/142979 DOI: https://doi.org/10.1155/2015/142979
Yusof Y, Ahmad N, Das S, Sulaiman S, Murad N. Chemopreventive efficacy of ginger (Zingiber officinale) in ethionine induced rat hepatocarcinogenesis. African J Tradit Complement Altern Med. 2009; 6(1):87-93. https://doi.org/10.4314/ajtcam.v6i1.57078 DOI: https://doi.org/10.4314/ajtcam.v6i1.57078
Park M, Bae J, Lee DS. Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytotherapy Res. 2008; 22(11):1446-9. https://doi.org/10.1002/ptr.2473 DOI: https://doi.org/10.1002/ptr.2473
Yeh HY, Chuang CH, Chen HC, Wan CJ, Chen TL, Lin LY. Bioactive components analysis of two various gingers (Zingiber officinale Roscoe) and antioxidant effect of ginger extracts. LWTFood Sci Tech. 2014; 55(1):329-34. https://doi.org/10.1016/j.lwt.2013.08.003 DOI: https://doi.org/10.1016/j.lwt.2013.08.003
de Lima RM, Dos Reis AC, de Menezes AA, Santos JV, Filho JW, Ferreira JR, et al. Protective and therapeutic potential of ginger (Zingiber officinale) extract and [6]-gingerol in cancer: A comprehensive review. Phytotherapy Res. 2018; 32(10):1885-907. https://doi.org/10.1002/ptr.6134 DOI: https://doi.org/10.1002/ptr.6134
Luo J, Inoue M, Iwasaki M, Sasazuki S, Otani T, Ye W, et al. Green tea and coffee intake and risk of pancreatic cancer in a large-scale, population-based cohort study in Japan (JPHC study). Eur J Cancer Prev. 2007; 16(6):542-8. https://doi.org/10.1097/CEJ.0b013e32809b4d30 DOI: https://doi.org/10.1097/CEJ.0b013e32809b4d30
Liang Y, Lu J, Zhang L. Comparative study of cream in infusions of black tea and green tea [Camellia sinensis (L.) O. Kuntze]. Int J Food Sci Tech. 2002; 37(6):627-34. https://doi.org/10.1046/j.1365-2621.2002.00589.x DOI: https://doi.org/10.1046/j.1365-2621.2002.00589.x
Jian L, Xie LP, Lee AH, Binns CW. Protective effect of green tea against prostate cancer: A case-control study in southeast China. Int J Cancer. 2004; 108(1):130-5. https://doi.org/10.1002/ijc.11550 DOI: https://doi.org/10.1002/ijc.11550
Fujiki H, Suganuma M, Imai K, Nakachi K. Green tea: Cancer preventive beverage and/or drug. Cancer lett. 2002; 188(1- 2):9-13. https://doi.org/10.1016/S0304-3835(02)00379-8 DOI: https://doi.org/10.1016/S0304-3835(02)00379-8
Liu CX, Xiao PG. Recent advances on ginseng research in China. J Ethnopharmacol. 1992; 36(1):27-38. https://doi.org/10.1016/0378-8741(92)90057-X DOI: https://doi.org/10.1016/0378-8741(92)90057-X
Wilkie A, Cordess C. Ginseng-a root just like a carrot? J R Soc Med. 1994; 87(10):594-5. https://doi.org/10.1177/014107689408701009 DOI: https://doi.org/10.1177/014107689408701009
Lin SY, Liu LM, Wu LC. Effects of Shenmai injection on immune function in cancer patients after chemotherapy. Chin J Integr Med. 1995; 15(8):451-453.
Xie FY, Zeng ZF, Huang HY. Clinical observation on nasopharyngeal carcinoma treated with combined therapy of radiotherapy and ginseng polysaccharide injection. Chin J Integr Med. 2001; 21(5):332-4. https://doi.org/10.1007/ BF02934369
Liu CD, Kwan D, Saxton RE, McFadden DW. Hypericin and photodynamic therapy decreases human pancreatic cancer in vitro and in vivo. J Surg Res. 2000; 93(1):137-43. https://doi.org/10.1006/jsre.2000.5949 DOI: https://doi.org/10.1006/jsre.2000.5949
Chung PS, Rhee CK, Kim KH, Paek W, Chung J, Paiva MB, et al. Intra tumoral hypericin and KTP laser therapy for transplanted squamous cell carcinoma. Laryngoscope. 2000; 110(8):1312-6. https://doi.org/10.1097/00005537- 200008000-00016 DOI: https://doi.org/10.1097/00005537-200008000-00016
Ouyang Z, Guo X, Chen X, Liu B, Zhang Q, Yin Z, et al. Hypericin targets osteoclast and prevents breast cancerinduced bone metastasis via NFATc1 signaling pathway. Oncotarget. 2018; 9(2):1868. https://doi.org/10.18632/oncotarget.22930 DOI: https://doi.org/10.18632/oncotarget.22930
Milner JA. Preclinical perspectives on garlic and cancer. J Nutr. 2006; 136:827S-31S. https://doi.org/10.1093/jn/136.3.827S DOI: https://doi.org/10.1093/jn/136.3.727S
Block E. The chemistry of garlic and onions. Sci Am. 1985; 252:114-9. https://doi.org/10.1038/scientificamerican0385-114 DOI: https://doi.org/10.1038/scientificamerican0385-114
Zhou Y, Zhuang W, Hu W, Liu GJ, Wu TX, Wu XT. Consumption of large amounts of Allium vegetables reduces risk for gastric cancer in a meta-analysis. Gastroenterology. 2011; 141:80-9. https://doi.org/10.1053/j.gastro.2011.03.057 DOI: https://doi.org/10.1053/j.gastro.2011.03.057
Galeone C, Pelucchi C, Levi F, Negri E, Franceschi S, Talamini R, et al. Onion and garlic use and human cancer. Am J Cli Nutr. 2006; 84:1027-32. https://doi.org/10.1093/ajcn/84.5.1027 DOI: https://doi.org/10.1093/ajcn/84.5.1027
Galeone C, Pelucchi C, Dal Maso L, Negri E, Montella M, Zucchetto A, et al. Allium vegetables intake and endometrial cancer risk. Public Health Nutr. 2009; 12:1576-9. https://doi.org/10.1017/S1368980008003820 DOI: https://doi.org/10.1017/S1368980008003820