An Attention-Grabbing Review on Stigma Maydis (Corn Silk)
DOI:
https://doi.org/10.18311/jnr/2023/31289Keywords:
Anti-hypertension, Botanical Description, Corn Silk, Diabetes, Pharmacological Action.Abstract
Herbs are one of humanity’s oldest known therapeutic needs for long-term health, and they serve as the foundation for modern medicine. There is currently a thirst and demand for healthy diets with added value all around the world. One such important herb that can be found in many different locations is corn silk. The Chinese and Native Americans have used the herb corn silk (Stigma maydis) for generations to treat a wide range of conditions. Many countries around the world, including Turkey, the United States, and France, use it as traditional medicine. Its potential application is highly dependent on the characteristics and mechanisms of action of the plant’s bioactive ingredients, such as flavonoids, terpenoids, and other phytochemicals. Pharmacological investigations have shown that this traditional plant has medicinal qualities such as anti-oxidant, anti-depressant, anti-hyperlipidemia, anti-diabetic, anti-inflammatory, neuroprotective toxicity and many more.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Kinjal Patel, Dhanya B. Sen, Ashim Kumar Sen, Rajesh A. Maheshwari
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-02-07
Published 2023-03-23
References
Hasanudin K, Hashim P, Mustafa S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules. 2012; 17:9697– 9715. https://doi.org/10.3390/molecules17089697
Wan Rosli WI, Nurhanan AR, Farid CG, Mohsin SS. Effect of Sodium Hydroxyde (NaOH) and Sodium Hypochlorite (NaHClO) on Morphology and Mineral Concentration of Zea mays Hairs (cornsilk). Annals of Microscopy. 2010; 10:4-10.
Gwendlin V, Induja TA, Manoj J, Shivasamy MS. Recent trends in effective utilization of by-product of corn. Indian Journal of Science. 2015; 22(76):18-26.
Maksimovic Z, Malencic D, Kovacevic N. Polyphenol contents and antioxidant activity of Maydis stigma extracts. Bioresource Technology. 2005; 96(8):873-7. https://doi.org/10.1016/j.biortech.2004.09.006 DOI: https://doi.org/10.1016/j.biortech.2004.09.006
Maksimovic ZA, Kovacevic N. Preliminary assay on the antioxidative activity of Maydis stigma extracts. Fitoterapia. 2003; 74(1-2):144-7. https://doi. org/10.1016/S0367-326X(02)00311-8 DOI: https://doi.org/10.1016/S0367-326X(02)00311-8
Mohsen SM, Ammar AS. Total phenolic contents and antioxidant activity of corn tassel extracts. Food chemistry. 2009; 112(3):595-8. https://doi. org/10.1016/j.foodchem.2008.06.014 DOI: https://doi.org/10.1016/j.foodchem.2008.06.014
El-Ghorab A, El-Massry KF, Shibamoto T. Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). Journal of Agricultural and Food Chemistry. 20 07; 55(22):9124- 7. https://doi.org/10.1021/jf071646e
Guo J, Liu T, Han L, Liu Y. The effects of corn silk on glycaemic metabolism. Nutrition and Metabolism. 2009; 6(1):1-6. https://doi.org/10.1186/1743-7075- 6-47
Waiss Jr AC, Chan BG, Elliger CA, Wiseman BR, McMillian WW, Widstrom NW, Zuber MS, Keaster AJ. Maysin, a flavone glycoside from corn silks with antibiotic activity toward corn earworm. Journal of Economic Entomology. 1979; 72(2):256-8. https:// doi.org/10.1093/jee/72.2.256
Habtemariam S. Extract of corn silk (Stigma of Zea mays) inhibits tumour necrosis factor-α-and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression. Planta Medica. 1998; 64(04):314-8. https://doi.org/10.1055/s-2006-957441
Elliger CA, Chan BG, Waiss Jr AC, Lundin RE, Haddon WF. C-Glycosylflavones from Zea mays that inhibit insect development. Phytochemistry. 1980; 19(2):293-7. https://doi.org/10.1016/S0031- 9422(00)81977-9
Snook ME, Gueldner RC, Widstrom NW, Wiseman BR, Himmelsbach DS, Harwood JS, Costello CE. Levels of maysin and maysin analogs in silks of maize germplasm. Journal of Agricultural and Food Chemistry. 1993; 41(9):1481-5. https://doi. org/10.1021/jf00033a024 DOI: https://doi.org/10.1021/jf00033a024
Sosa A, Lopez de Ruiz RE, Fusco MD, Ruiz SO. Flavonoides y saponinas de estilos y estigmas de Zea mays L.(Gramineae). Acta Farmaceutica Bonaerense. 1997; 16.
Fazilatun N, Zhari I, Nornisah M. Phytochemicals from corn silk (Zea mays). J Trop Med Plants. 2001; 2:189-92.
Ebrahimzadeh MA, Pourmorad F, Hafezi S. Antioxidant activities of Iranian corn silk. Turkish Journal of Biology. 2008; 32(1):43-9.
Liu J, Wang C, Wang Z, Zhang C, Lu S, Liu J. The antioxidant and free-radical scavenging activities of extract and fractions from corn silk (Zea mays L.) and related flavone glycosides. Food Chemistry. 2011; 126(1):261-9. https://doi.org/10.1016/j. foodchem.2010.11.014 DOI: https://doi.org/10.1016/j.foodchem.2010.11.014
Ho TY, Li CC, Lo HY, Chen FY, Hsiang CY. Corn silk extract and its bioactive peptide ameliorated lipopolysaccharide-induced inflammation in mice via the nuclear factor-κB signaling pathway. Journal of Agricultural and Food Chemistry. 2017; 65(4):759- 68. https://doi.org/10.1021/acs.jafc.6b03327 DOI: https://doi.org/10.1021/acs.jafc.6b03327
Que L, Li HR. Discussion on the Herbal Prescription Features in Materia Medica of South Yunnan. Journal of Yunnan University of Traditional Chinese Medicine. 2011.
Lu S, Wu J, Gao Y, Han G, Ding W, Huang X. MicroRNA-4262 activates the NF-κB and enhances the proliferation of hepatocellular carcinoma cells. International Journal of Biological Macromolecules. 2016; 86:43-9. https://doi.org/10.1016/j. ijbiomac.2016.01.019 DOI: https://doi.org/10.1016/j.ijbiomac.2016.01.019
Ramessar K, Sabalza M, Capell T, Christou P. Maize plants: An ideal production platform for effective and safe molecular pharming. Plant Science. 2008; 174(4):409-19. https://doi.org/10.1016/j.plantsci DOI: https://doi.org/10.1016/j.plantsci.2008.02.002
Wynn SG, Fougere BJ. Materia medica. Veterinary Herbal Medicine. St Louis, MO: Mosby, Elsevier. 2007; 610-1.
Anderson E, Brown WL. The history of the common maize varieties of the United States corn belt. Agricultural History. 1952; 26(1):2-8.
Hasanudin K, Hashim P, Mustafa S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules. 2012; 17(8):9697- 715. https://doi.org/10.3390/molecules17089697
Leon ND, Coors JG. Genetic Improvement of Corn for Lignocellulosic. In Genetic Improvement of Bioenergy Crops. Springer, New York, NY. 2008; pp. 185-210. https://doi.org/10.1007/978-0-387- 70805-8_7 DOI: https://doi.org/10.1007/978-0-387-70805-8_7
Inglett GE. Corn: Culture, Processing, Products; The AVI Publishing Company: Westport, CT, USA, 1970.
Rahman NA, Rosli WI. Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn. Journal of King Saud University-Science. 2014; 26(2):119. https://doi. org/10.1016/j.jksus.2013.11.002
Alam EA. Evaluation of antioxidant and antibacterial activities of Egyptian Maydis stigma (Zea mays hairs) rich in some bioactive constituents. J. Am. Sci. 2011; 7(726-729):2011.
Chen S, Chen H, Tian J, Wang J, Wang Y, Xing L. Enzymolysis-ultrasonic assisted extraction, chemical characteristics and bioactivities of polysaccharides from corn silk. Carbohydrate polymers. 2014; 101:332- 41. https://doi.org/10.1016/j.carbpol.2013.09.046 DOI: https://doi.org/10.1016/j.carbpol.2013.09.046
Ren SC, Liu ZL, Ding XL. Isolation and identification of two novel flavone glycosides from corn silk (Stigma maydis). Journal of Medicinal Plants Research. 2009; 3(12):1009-15.
Rahman NA, Rosli WI. Nutritional compositions and antioxidative capacity of the silk obtained from immature and mature corn. Journal of King Saud University-Science. 2014; 26(2):119-27. https://doi. org/10.1016/j.jksus.2013.11.002 DOI: https://doi.org/10.1016/j.jksus.2013.11.002
Elliger CA, Chan BG, Waiss Jr AC, Lundin RE, Haddon WF. C-Glycosylflavones from Zea mays that inhibit insect development. Phytochemistry. 1980; 19(2):293-7. https://doi.org/10.1016/S0031- 9422(00)81977-9 DOI: https://doi.org/10.1016/S0031-9422(00)81977-9
Waiss Jr AC, Chan BG, Elliger CA, Wiseman BR, McMillian WW, Widstrom NW, Zuber MS, Keaster AJ. Maysin, a flavone glycoside from corn silks with antibiotic activity toward corn earworm. Journal of Economic Entomology. 1979; 72(2):256-8. https:// doi.org/10.1093/jee/72.2.256 DOI: https://doi.org/10.1093/jee/72.2.256
El-Ghorab A, El-Massry KF, Shibamoto T. Chemical composition of the volatile extract and antioxidant activities of the volatile and nonvolatile extracts of Egyptian corn silk (Zea mays L.). Journal of agricultural and food chemistry. 2007; 55(22):9124-7. https://doi.org/10.1021/jf071646e DOI: https://doi.org/10.1021/jf071646e
Wang KJ, Zhao JL. Corn silk (Zea mays L.), a source of natural antioxidants with α-amylase, α-glucosidase, advanced glycation and diabetic nephropathy inhibitory activities. Biomedicine and Pharmacotherapy. 2019; 110:510-7. https://doi. org/10.1016/j.biopha.2018.11.126 DOI: https://doi.org/10.1016/j.biopha.2018.11.126
Halliwell B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? The lancet. 1994; 344(8924):721-4. https://doi.org/10.1016/ S0140-6736(94)92211-X DOI: https://doi.org/10.1016/S0140-6736(94)92211-X
Sarepoua E, Tangwongchai R, Suriharn B, Lertrat K. Influence of variety and harvest maturity on phytochemical content in corn silk. Food Chemistry. 2015; 169:424-9. https://doi.org/10.1016/j. foodchem.2014.07.136 DOI: https://doi.org/10.1016/j.foodchem.2014.07.136
Ebrahimzadeh MA, Pourmorad F, Bekhradnia AR. Iron chelating activity, phenol and flavonoid content of some medicinal plants from Iran. African Journal of Biotechnology. 2008; 7(18).
Sokolova R, Degano I, Ramesova S, Bulickova J, Hromadova M, Gal M, Fiedler J, Valasek M. The oxidation mechanism of the antioxidant quercetin in nonaqueous media. Electrochimica Acta. 2011; 56(21):7421-7. https://doi.org/10.1016/j. electacta.2011.04.121 DOI: https://doi.org/10.1016/j.electacta.2011.04.121
Nguemfo EL, Dimo T, Azebaze AG, Asongalem EA, Alaoui K, Dongmo AB, Cherrah Y, Kamtchouing P. Anti-inflammatory and anti-nociceptive activities of the stem bark extracts from Allanblackia monticola STANER LC (Guttiferae). Journal of Ethnopharmacology. 2007; 114(3):417-24. https:// doi.org/10.1016/j.jep.2007.08.022 DOI: https://doi.org/10.1016/j.jep.2007.08.022
Stoecklin G, Lu M, Rattenbacher B, Moroni C. A constitutive decay element promotes tumor necrosis factor alpha mRNA degradation via an AU-rich element-independent pathway. Molecular and Cellular Biology. 2003; 23(10):3506-15. https://doi. org/10.1128/MCB.23.10.3506-3515.2003 DOI: https://doi.org/10.1128/MCB.23.10.3506-3515.2003
Habtemariam S. Extract of corn silk (Stigma of Zea mays) inhibits tumour necrosis factor-α-and bacterial lipopolysaccharide-induced cell adhesion and ICAM-1 expression. Planta Medica. 1998; 64(04):314-8. https://doi. org/10.1055/s-2006-957441 DOI: https://doi.org/10.1055/s-2006-957441
Wang GQ, Xu T, Bu XM, Liu BY. Anti-inflammation effects of corn silk in a rat model of carrageenin-induced pleurisy. Inflammation. 2012; 35(3):822-7. https://doi.org/10.1007/s10753-011-9382-9 DOI: https://doi.org/10.1007/s10753-011-9382-9
Kim KA, Shin HH, Choi SK, Choi HS. Corn silk induced cyclooxygenase-2 in murine macrophages. Bioscience, Biotechnology, and Biochemistry. 2005; 69(10):1848-53. https://doi.org/10.1271/bbb.69.1848 DOI: https://doi.org/10.1271/bbb.69.1848
Sahib AS, Mohammed IH, Hamdan SJ. Use of aqueous extract of corn silk in the treatment of urinary tract infection. Journal of Complementary Medicine Research. 1970; 1(2):93. https://doi.org/10.5455/ jice.20120525123150 DOI: https://doi.org/10.5455/jice.20120525123150
Nessa F, Ismail Z, Mohamed N. Antimicrobial activities of extracts and flavonoid glycosides of corn silk (Zea mays L). International Journal of Biotechnology for Wellness Industries. 2012; 1(2):115-20. https://doi. org/10.6000/1927-3037/2012.01.02.02 DOI: https://doi.org/10.6000/1927-3037/2012.01.02.02
Kang HK, Bae IK. Antimicrobial activities of corn silk extract of Klebsiella pneumoniae. Journal of Life Science. 2015; 25(12):1399-407. https://doi. org/10.5352/JLS.2015.25.12.1399 DOI: https://doi.org/10.5352/JLS.2015.25.12.1399
Kaur D, Kaur D, Bains NA, Chopra AN, Arora PO. Anti-anxiety evaluation of extracts of stigma maydis (corn silk). Int J Pharm Pharm Sci. 2015; 8:309-12.
Tanaka M, Nakamura F, Mizokawa S, Matsumura A, Nozaki S, Watanabe Y. Establishment and assessment of a rat model of fatigue. Neuroscience Letters. 2003; 352(3):159-62. https://doi.org/10.1016/j. neulet.2003.08.051 DOI: https://doi.org/10.1016/j.neulet.2003.08.051
Yu B, Lu ZX, Bie XM, Lu FX, Huang XQ. Scavenging and anti-fatigue activity of fermented defatted soybean peptides. European Food Research and Technology. 2008; 226(3):415-21. https://doi.org/10.1007/s00217- 006-0552-1 DOI: https://doi.org/10.1007/s00217-006-0552-1
Ebrahimzadeh, MA, M Mahmoudi, N Ahangar. “Antidepressant activity of corn silk”. 2009; 647-652.
Zhao W, Yin Y, Yu Z, Liu J, Chen F. Comparison of antidiabetic effects of polysaccharides from corn silk on normal and hyperglycemia rats. International Journal of Biological Macromolecules. 2012; 50(4):1133-7. https://doi.org/10.1016/j.ijbiomac.2012.02.004
Jiang QG, Li TY, Liu DN, Zhang HT. PI3K/Akt pathway involving into apoptosis and invasion in human colon cancer cells LoVo. Molecular biology reports. 2014; 41(5):3359-67. https://doi.org/10.1007/ s11033-014-3198-2 DOI: https://doi.org/10.1007/s11033-014-3198-2
Su TR, Tsai FJ, Lin JJ, Huang HH, Chiu CC, Su JH, Yang YT, Chen JY, Wong BS, Wu YJ. Induction of apoptosis by 11-dehydrosinulariolide via mitochondrial dysregulation and ER stress pathways in human melanoma cells. Marine Drugs. 2012; 10(8):1883-98. https://doi.org/10.3390/md10081883 DOI: https://doi.org/10.3390/md10081883
Guo H, Guan H, Yang W, Liu H, Hou H, Chen X, Liu Z, Zang C, Liu Y, Liu J. Pro-apoptotic and anti proliferative effects of corn silk extract on human colon cancer cell lines. Oncology Letters. 2017; 13(2):973-8. https://doi.org/10.3892/ol.2016.5460 DOI: https://doi.org/10.3892/ol.2016.5460
Tao H, Chen X, Du Z, Ding K. Corn silk crude polysaccharide exerts anti-pancreatic cancer activity by blocking the EGFR/PI3K/AKT/CREB signaling pathway. Food and Function. 2020; 11(8):6961-70. https://doi.org/10.1039/D0FO00403K DOI: https://doi.org/10.1039/D0FO00403K
Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Physical Therapy. 2008; 88(11):1254- 64. https://doi.org/10.2522/ptj.20080020 DOI: https://doi.org/10.2522/ptj.20080020
Kamyab H, Hejrati S, Khanavi M, Malihi F, Mohammadirad A, Baeeri M, Esmaily H, Abdollahi M. Hepatic mechanisms of the walnut antidiabetic effect in mice. Central European Journal of Biology. 2010; 5(3):304-9. https://doi.org/10.2478/s11535- 010-0019-z DOI: https://doi.org/10.2478/s11535-010-0019-z
Shafiei NR, Parizadeh SM, Zokaei N, Ghorbani A. Effect of hydro-alcoholic extract of Vaccinium arctostaphylos on insulin release from rat-isolated langerhans islets.
Shafiee-Nick R, Parizadeh SM, Zokaei N, Ghorbani A. Effect of Ganoderma lucidum hydroalcoholic extract on insulin release in rat-isolated pancreatic islets. Avicenna Journal of Phytomedicine. 2012; 2(4):206.
Guo J, Liu T, Han L, Liu Y. The effects of corn silk on glycaemic metabolism. Nutrition and metabolism. 2009; 6(1):1-6. https://doi.org/10.1186/1743-7075-6- 47
Zhao W, Yin Y, Yu Z, Liu J, Chen F. Comparison of antidiabetic effects of polysaccharides from corn silk on normal and hyperglycemia rats. International Journal of Biological Macromolecules. 2012; 50(4):1133-7. https://doi.org/10.1016/j.ijbiomac.2012.02.004
Sabiu S, O’neill FH, Ashafa AO. Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment. Journal of Ethnopharmacology. 2016; 183:1-8. https://doi. org/10.1016/j.jep.2016.02.024 DOI: https://doi.org/10.1016/j.jep.2016.02.024
Kaushal J, Singh G, Arya SK. Emerging trends and future prospective in enzyme technology. In Value Addition in Food Products and Processing Through Enzyme Technology. Academic Press. 2022; pp. 491-503. https://doi.org/10.1016/B978-0-323-89929- 1.00036-6 DOI: https://doi.org/10.1016/B978-0-323-89929-1.00036-6
Bader M. Tissue renin-angiotensin-aldosterone systems: Targets for pharmacological therapy. Annual review of pharmacology and toxicology. 2010; 50:439-65. https://doi.org/10.1146/annurev. pharmtox.010909.105610 DOI: https://doi.org/10.1146/annurev.pharmtox.010909.105610
Wright JM, Musini VM, Gill R. First‐line drugs for hypertension. Cochrane Database of systematic reviews. 2018; (4). https://doi.org/10.1002/14651858. CD001841.pub3 DOI: https://doi.org/10.1002/14651858.CD001841.pub3
Hasanudin K, Hashim P, Mustafa S. Corn silk (Stigma maydis) in healthcare: A phytochemical and pharmacological review. Molecules. 2012; 17(8):9697- 71. https://doi.org/10.3390/molecules17089697 DOI: https://doi.org/10.3390/molecules17089697
George GO, Idu FK. Corn silk aqueous extracts and intraocular pressure of systemic and non‐systemic hypertensive subjects. Clinical and Experimental Optometry. 2015; 98(2):138-49. https://doi. org/10.1111/cxo.12240 DOI: https://doi.org/10.1111/cxo.12240
Fuchs S, Xiao HD, Hubert C, Michaud A, Campbell DJ, Adams JW, Capecchi MR, Corvol P, Bernstein KE. Angiotensin-converting enzyme C-terminal catalytic domain is the main site of angiotensin I cleavage in vivo. Hypertension. 2008; 51(2):267-74. https://doi. org/10.1161/HYPERTENSIONAHA.107.097865 DOI: https://doi.org/10.1161/HYPERTENSIONAHA.107.097865
Masuyer G, Schwager SL, Sturrock ED, Isaac RE, Acharya KR. Molecular recognition and regulation of human angiotensin-I converting enzyme (ACE) activity by natural inhibitory peptides. Scientific reports. 2012; 2(1):1-0. https://doi.org/10.1038/ srep00717 DOI: https://doi.org/10.1038/srep00717
Martin N, Pantoja C, Chiang L, Bardisa L, Araya C, Roman R. Hemodynamic effects of a boiling water dialysate of maize silk in normotensive anaesthetized dogs. Journal of Eethno-pharmacology. 1991. https:// doi.org/10.1016/0378-8741(91)90010-B DOI: https://doi.org/10.1016/0378-8741(91)90010-B
Miyoshi S, Kaneko T, Ishikawa H, Tanaka H, Maruyama S. Production of bioactive peptides from corn endosperm proteins by some proteases. Annals of the New York Academy of Sciences. 1995; 750(1):429-31. https://doi.org/10.1111/j.1749-6632.1995.tb19990.x DOI: https://doi.org/10.1111/j.1749-6632.1995.tb19990.x
Muzzi‐Bjornson L, Macera L. Preventing infection in elders with long‐term indwelling urinary catheters. Journal of the American Academy of nurse Practitioners. 2011; 23(3):127-34. https://doi. org/10.1111/j.1745-7599.2010.00588.x DOI: https://doi.org/10.1111/j.1745-7599.2010.00588.x
Aukkanit N, Kemngoen T, Ponharn N. Utilization of corn silk in low fat meatballs and its characteristics. Procedia-Social and Behavioral Sciences. 2015; 197:1403-10. https://doi.org/10.1016/j. sbspro.2015.07.086 DOI: https://doi.org/10.1016/j.sbspro.2015.07.086
Mada SB, Sani L, Chechet GD. Corn Silk From Waste Material to Potential Therapeutic Agent: A Mini Review.
Alfath CR, Yulina V, Sunnati S. Antibacterial effect of granati fructus cortex extract on Streptococcus mutans in vitro. Journal of Dentistry Indonesia. 2013; 20(1):5-8. https://doi.org/10.14693/jdi.v20i1.126 DOI: https://doi.org/10.14693/jdi.v20i1.126
Dinarvand R, Sepehri N, Manoochehri S, Rouhani H, Atyabi F. Polylactide-co-glycolide nanoparticles for controlled delivery of anticancer agents. International Journal of Nanomedicine. 2011; 6:877. https://doi. org/10.2147/IJN.S18905 DOI: https://doi.org/10.2147/IJN.S18905
Sukandar EY, Sigit JI, Adiwibowo LF. Study of kidney repair mechanisms of corn silk (Zea mays L. Hair)-binahong (Anredera cordifolia (Ten.) Steenis) leaves combination in rat model of kidney failure. International Journal of Pharmacology. 2013; 9(1):12- 23. https://doi.org/10.3923/ijp.2013.12.23 DOI: https://doi.org/10.3923/ijp.2013.12.23
Reaven GM. Banting lecture. Role of insulin resistance in human disease. Diabetes. 1988; 37:1595- 607. https://doi.org/10.2337/diab.37.12.1595 DOI: https://doi.org/10.2337/diab.37.12.1595
Alberti, K. GMMF. “ International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity: Harmonizing the Metabolic Syndrome: A Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation....” Circulation 120. 2009; 1640-1645. https://doi.org/10.1161/ CIRCULATIONAHA.109.192644 DOI: https://doi.org/10.1161/CIRCULATIONAHA.109.192644
Guo J, Liu T, Han L, Liu Y. The effects of corn silk on glycaemic metabolism. Nutrition and Metabolism. 2009; 6(1):1-6. https://doi.org/10.1186/1743-7075-6- 47 DOI: https://doi.org/10.1186/1743-7075-6-47
Zhao W, Yin Y, Yu Z, Liu J, Chen F. Comparison of antidiabetic effects of polysaccharides from corn silk on normal and hyperglycemia rats. International Journal of Biological Macromolecules. 2012; 50(4):1133-7. https://doi.org/10.1016/j.ijbiomac.2012.02.004 DOI: https://doi.org/10.1016/j.ijbiomac.2012.02.004
Wen X, Yue L. The influence of corn silk polysaccharide on signal pathway of TGF-β1 in type 2 diabetic mellitus rat. The open Biomedical Engineering Journal. 2015; 9:204. https://doi.org/10.2174/1874120701509010204 DOI: https://doi.org/10.2174/1874120701509010204
Krishna GG. Effect of potassium intake on blood pressure. Journal of the American Society of Nephrology. 1990; 1(1):43-52. https://doi. org/10.1681/ASN.V1143 DOI: https://doi.org/10.1681/ASN.V1143
Cui R, Qi Z, Zhou L, Li Z, Li Q, Zhang J. Evaluation of serum lipid profile, body mass index, and waistline in Chinese patients with type 2 diabetes mellitus. Clinical Interventions in Aging. 2016; 11:445. https:// doi.org/10.2147/CIA.S104803 DOI: https://doi.org/10.2147/CIA.S104803
Pérez MR, Medina-Gomez G. Obesity, adipogenesis and insulin resistance. Endocrinologia y Nutricion (English Edition). 2011; 58(7):360-9. https://doi. org/10.1016/j.endoen.2011.05.004 DOI: https://doi.org/10.1016/j.endoen.2011.05.004
Sethi JK, Vidal-Puig AJ. Thematic review series: adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. Journal of Lipid Research. 2007; 48(6):1253-62. https://doi. org/10.1194/jlr.R700005-JLR200 DOI: https://doi.org/10.1194/jlr.R700005-JLR200
Sorisky A, Magun R, Gagnon AM. Adipose cell apoptosis: death in the energy depot. International Journal of Obesity. 2000; 24(4):S3-7. https://doi. org/10.1038/sj.ijo.0801491 DOI: https://doi.org/10.1038/sj.ijo.0801491
Sulaimon SS, Kitchell BE. The biology of melanocytes. Veterinary Dermatology. 2003; 14(2):57-65. https:// doi.org/10.1046/j.1365-3164.2003.00327.x DOI: https://doi.org/10.1046/j.1365-3164.2003.00327.x
Lin JY, Fisher DE. Melanocyte biology and skin pigmentation. Nature. 2007; 445(7130):843-50. https://doi.org/10.1038/nature05660 DOI: https://doi.org/10.1038/nature05660
Choi SY, Lee Y, Kim SS, Ju HM, Baek JH, Park CS, Lee DH. Inhibitory effect of corn silk on skin pigmentation. Molecules. 2014; 19(3):2808-18. https://doi.org/10.3390/molecules19032808 DOI: https://doi.org/10.3390/molecules19032808
Telang M. Molecular analysis of plant-pest interaction with special reference to helicoverpa armigera and proteinase inhibitors from host and non-host plants. 2000.