Spectrophotometric Methods for the Analysis of Berberine Hydrochloride and Eugenol in Formulated Emulgel

Jump To References Section

Authors

  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara – 391760, Gujarat ,IN ORCID logo http://orcid.org/0000-0002-9246-9249
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara – 391760, Gujarat ,IN ORCID logo http://orcid.org/0000-0001-8871-7396
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara – 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara – 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara – 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara – 391760, Gujarat ,IN
  • Department of Pharmacy, Sumandeep Vidyapeeth Deemed to be University, Piparia, Waghodia, Vadodara – 391760, Gujarat ,IN

DOI:

https://doi.org/10.18311/jnr/2022/30166

Keywords:

Berberine Hydrochloride, Eugenol, Phytoconstituent, UV-spectrophotometric Method, UV Simultaneous Method, Zero-crossing Derivative Method

Abstract

The present work describes three spectrophotometric methods for determining two phytoconstituent berberine hydrochloride and eugenol in formulated gels: simultaneous equation method, absorbance correction, and zero-crossing derivative method. In the simultaneous equation method, the absorbance at 263 nm and 280 nm and the absorbance correction method at 345 nm and 280 nm were measured and applied to their respective equation for the estimation of berberine hydrochloride and eugenol in phosphate buffer and formulated emulgel. The amplitudes of the first derivative spectra were measured at 252.5 nm for berberine hydrochloride and 263.5 nm for eugenol in zero-crossing crossing derivative spectrophotometry. For berberine hydrochloride and eugenol, linearity was attained in the concentration ranges of 4–20 and 2–10 µg/ml, respectively. Validation shows the applicability of the above procedures for the quantitative determination of berberine hydrochloride and eugenol. As a result, the presented method sucessfully estimated the aforesaid active phytoconstituent in formulated emulgel, with no interference from excipients.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Downloads

Published

2022-07-30

How to Cite

Zanwar, A. S., Sen, D. B., Memon, M., Sanathra, R., Patel, D., Maheshwari, R. A., & Sen, A. K. (2022). Spectrophotometric Methods for the Analysis of Berberine Hydrochloride and Eugenol in Formulated Emulgel. Journal of Natural Remedies, 22(3), 440–448. https://doi.org/10.18311/jnr/2022/30166

Issue

Section

Research Articles
Received 2022-05-01
Accepted 2022-06-08
Published 2022-07-30

 

References

Urban K, Chu S, Giesey RL, Mehrmal S, Uppal P, Delost ME, Delost GR. Burden of skin disease and associated socioeconomic status in Asia: A cross-sectional analysis from the Global Burden of Disease Study 1990-2017. J Am Acad Dermatol. 2021; 2:40–50. https://doi.org/10.1016/j.jdin.2020.10.006. PMid:34409353. PMCid:PMC8362322 DOI: https://doi.org/10.1016/j.jdin.2020.10.006

Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The global burden of skin disease in 2010: An analysis of the prevalence and impact of skin conditions. J Invest Dermatol. 2014; 134(6):1527–34. https://doi.org/10.1038/jid.2013.446. PMid:24166134 DOI: https://doi.org/10.1038/jid.2013.446

Xu JG, Liu T, Hu QP, Cao XM. Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules. 2016; 21(9):1194. https://doi.org/10.3390/molecules21091194. PMid:27617990. PMCid:PMC6274078 DOI: https://doi.org/10.3390/molecules21091194

De Araújo Lopes A, Da Fonseca FN, Rocha TM, De Freitas LB, Araújo EV, Wong DV, et al. Eugenol as a promising molecule for the treatment of dermatitis: antioxidant and anti-inflammatory activities and its nano formulation. Oxid Med Cell Longev. 2018. https://doi.org/10.1155/2018/8194849. PMid:30647816. PMCid:PMC6311755 DOI: https://doi.org/10.1155/2018/8194849

Bachiega TF, de Sousa JP, Bastos JK, Sforcin JM. Clove and eugenol in noncytotoxic concentrations exert immunomodulatory/ anti-inflammatory action on cytokine production by murine macrophages. J Pharm Pharmacol. 2012; 64(4):610–6. https://doi.org/10.1111/j.2042-7158.2011.01440.x. PMid:22420667 DOI: https://doi.org/10.1111/j.2042-7158.2011.01440.x

Nimisha DA, Fatima Z, Neema CD. Antipsoriatic and anti-inflammatory studies of Berberis aristata extract loaded nanovesicular gels. Pharmacogn Mag. 2017; 13(Suppl 3):S587. https://doi.org/10.4103/pm.pm_210_17. PMid:29142419. PMCid:PMC5669102 DOI: https://doi.org/10.4103/pm.pm_210_17

Khan MI, Rahman MA, Badruddeen, Khalid M, Khushtar M, Mujahid M. Quality control standardization and evaluation of antimicrobial potential of Daruhaldi (Berberis aristata DC) stem bark. J Diet Suppl. 2020; 17(1):97– 109. https://doi.org/10.1080/19390211.2018.1484405. PMid:30289011 DOI: https://doi.org/10.1080/19390211.2018.1484405

Kumar D, Singh J, Antil M, Kumar V. Emulgel-novel topical drug delivery system–a comprehensive review. Int J Pharm Sci Res. 2016; 7(12):4733.

Vanpariya F, Shiroya M, Malaviya M. Emulgel: A Review. Int. J. Pharm. Sci. Res. 2021; 10:847.

Da Silva AR, De Andrade Neto JB, Da Silva CR, Campos RD, Costa Silva RA, Freitas DD, et al. Berberine antifungal activity in fluconazole-resistant pathogenic yeasts: Action mechanism evaluated by flow cytometry and biofilm growth inhibition in Candida spp. Antimicrob Agents Chemother. 2016; 60(6):3551–7. https://doi.org/10.1128/AAC.01846-15. PMid:27021328. PMCid:PMC4879420 DOI: https://doi.org/10.1128/AAC.01846-15

Xiao CW, Ji QA, Wei Q, Liu Y, Bao GL. Antifungal activity of berberine hydrochloride and palmatine hydrochloride against Microsporum canis-induced dermatitis in rabbits and underlying mechanism. BMC Complement Altern Med. 2015; 15(1):1–5. https://doi.org/10.1186/s12906-015-0680-x. PMid:26054937. PMCid:PMC4460627 DOI: https://doi.org/10.1186/s12906-015-0680-x

De Oliveira Pereira F, Mendes JM, De Oliveira Lima E. Investigation on mechanism of antifungal activity of eugenol against Trichophyton rubrum. Med Mycol. 2013; 51(5):507–13. https://doi.org/10.3109/13693786.2012.7429 66. PMid:23181601 DOI: https://doi.org/10.3109/13693786.2012.742966

Garg A, Singh S. Enhancement in antifungal activity of eugenol in immune suppressed rats through lipid nanocarriers. Colloids Surf. B: Biointerfaces. 2011; 87(2):280–8. https://doi.org/10.1016/j.colsurfb.2011.05.030. PMid:21689909 DOI: https://doi.org/10.1016/j.colsurfb.2011.05.030

Thakur M, Sharma K, Mehta S, Rai S, Sharma I, Tripathi A. Phytochemicals, antimicrobial and antioxidant potential of methanolic extract of Berberis aristata roots. Res J Pharm Technol. 2020; 13(12):5763– 7. https://doi.org/10.5958/0974-360X.2020.01004.5 DOI: https://doi.org/10.5958/0974-360X.2020.01004.5

Pasrija A, Singh R, Katiyar CK. Validated HPLC-UV method for the determination of berberine in raw herb Daruharidra (Berberis aristata DC), its extract, and in commercially marketed Ayurvedic dosage forms. Int J Ayurveda Res. 2010; 1(4):243–6. https://doi.org/10.4103/0974-7788.76789. PMid:21455453. PMCid:PMC3059448 DOI: https://doi.org/10.4103/0974-7788.76789

Akowuah GA, Okechukwu PN, Chiam NC. Evaluation of HPLC and spectrophotometric methods for analysis of bioactive constituent berberine in stem extracts of Coscinium fenestratum. Acta Chromatogr. 2014; 26(2):243– 54. https://doi.org/10.1556/AChrom.26.2014.2.4 DOI: https://doi.org/10.1556/AChrom.26.2014.2.4

Joshi H, Kanaki N. Quantitative analysis of berberine in an ayurvedic formulation-Rasayana churna by UV spectrophotometry. J Pharm Sci Biosci. Res. 2013; 3(1):32.

Patil S,Dash RP, Anandjiwala S, Nivsarkar M. Simultaneous quantification of berberine and lysergol by HPLC?UV: evidence that lysergol enhances the oral bioavailability of berberine in rats. Biomed Chromatogr. 2012; 26(10):1170– 5. https://doi.org/10.1002/bmc.2674. PMid:22213237 DOI: https://doi.org/10.1002/bmc.2674

Mujtaba MA, Development and validation of UV-spectrophotometric methods for the determination of Berberinein Polymeric Nanoparticles. Adv Sci Eng Med. 2019; 11(12):1273–8. https://doi.org/10.1166/asem.2019.2475 DOI: https://doi.org/10.1166/asem.2019.2475

Wang J, Jiang Y, Wang B, Zhang. A review on analytical methods for natural berberine alkaloids. J Sep Sci. 2019; 42(9):1794–815. https://doi.org/10.1002/jssc.201800952. PMid:30793835 DOI: https://doi.org/10.1002/jssc.201800952

Garhwal S. Analysis of berberine content using HPTLC fingerprinting of root and bark of three Himalayan Berberis species. Asian J Biotechnol. 2010; 2(4):239–45. https://doi.org/10.3923/ajbkr.2010.239.245 DOI: https://doi.org/10.3923/ajbkr.2010.239.245

Satija S, Tambuwala MM, Pabreja K, Bakshi HA, Chellappan DK, Aljabali AA, et al. Development of a novel HPTLC fingerprint method for simultaneous estimation of berberine and rutin in medicinal plants and their pharmaceutical preparations followed by its application in antioxidant assay. J Planar Chromatogr - Mod TLC. 2020; 33(3):313–9. https://doi.org/10.1007/s00764-020-00035-y DOI: https://doi.org/10.1007/s00764-020-00035-y

Satija S, Malik S, Garg M. Development of a new, rapid, and sensitive validated high-performance thin-layer chromatographic method for the estimation of berberine in Tinospora cordifolia. J Planar Chromatogr - Mod. TLC. 2016; 29(3):209–15. https://doi.org/10.1556/1006.2016.29.3.7 DOI: https://doi.org/10.1556/1006.2016.29.3.7

Samal PK. HPTLC analysis of berberine in Argemone mexicana, L. J Glob Trends Pharm Sci. 2013; 4(2):1073–6.

Patil S, Joshi M, Menon S, Mhatre M. Simultaneous quantification of pharmacological markers quercetin and berberine using High-Performance Thin-Layer Chromatography (HPTLC) and High-Performance Liquid Chromatography (HPLC) from a polyherbal formulation Pushyanuga Churna. J AOAC Int. 2019; 102(4):1003–13. https://doi.org/10.5740/jaoacint.18-0380. PMid:30563588 DOI: https://doi.org/10.5740/jaoacint.18-0380

Pramod K, Ansari SH, Ali J. UV spectrophotometric method for the quantification of eugenol during in vitro release studies. Asian J Pharm Anal. 2013; 3(3):86–9.

Higashi Y, Fujii Y. HPLC-UV analysis of eugenol in clove and cinnamon oils after pre-column derivatization with 4-fluoro-7-nitro-2, 1, 3-benzoxadiazole. J Liq Chromatogr Relat Technol. 2010; 34(1):18–25. https://doi.org/10.1080/10826076.2011.534689 DOI: https://doi.org/10.1080/10826076.2011.534689

Thyagaraj VD, Koshy R, Kachroo M, Mayachari AS, Sawant LP, Balasubramanium M. Validated RP-HPLC-UV/DAD method for simultaneous quantitative determination of rosmarinic acid and eugenol in Ocimum sanctum L. Pharm Methods. 2013; 4(1):1–5. https://doi.org/10.1016/j.phme.2013.08.003 DOI: https://doi.org/10.1016/j.phme.2013.08.003

Inam F, Deo SU, Narkhede NE. HPLC-UV method development and quantification of eugenol from methanolic extracts of some spices. Int J Chem Phys Sci. 2014; 3(6):92– 102.

Gopu CL, Aher S, Mehta H, Paradkar AR, Mahadik KR. Simultaneous determination of cinnamaldehyde, eugenol and piperine by HPTLC densitometric method. Phytochem Anal. 2008; 19(2):116–21. https://doi.org/10.1002/pca.1022. PMid:17853382 DOI: https://doi.org/10.1002/pca.1022

Patra KC, Kumar KJ. A validated HPTLC method for simultaneous analysis of eugenol and piperine in a siddha formulation. J Planar Chromatogr - Mod TLC. 2010; 23(4):293–7. https://doi.org/10.1556/JPC.23.2010.4.11 DOI: https://doi.org/10.1556/JPC.23.2010.4.11

Foudah AI, Shakeel F, AlqarniMH, Ross SA, Salkini MA, Alam P. Simultaneous estimation of cinnamaldehyde and eugenol in essential oils and traditional and ultrasoundassisted extracts of different species of cinnamon using a sustainable/green HPTLC technique. Molecules. 2021; 26(7):2054. https://doi.org/10.3390/molecules26072054. PMid:33916710. PMCid:PMC8038348 DOI: https://doi.org/10.3390/molecules26072054

Charde MS, Chakolkar M, Welankiwar A, Keshwar U, Shrikande BK. Development of validated HPTLC method for the estimation of eugenol in marketed herbal formulation of muscle and joint HRX pain relieving oil. Int J Phytopharm. 2014; 4(1):28–32.

Battu SK, Repka MA, Maddineni S, Chittiboyina AG, Avery MA, Majumdar S. Physicochemical characterization of berberine chloride: a perspective in the development of a solution dosage form for oral delivery. AAPS Pharm Sci Tech. 2010; 11(3):1466–75. https://doi.org/10.1208/s12249-010-9520-y. PMid:20842541. PMCid:PMC2974104 DOI: https://doi.org/10.1208/s12249-010-9520-y

Pramod K, Ansari SH, Ali J. UV spectrophotometric method for the quantification of eugenol during in vitro release studies. Asian J Pharm Anal. 2013; 3(3):86–9.

Sen AK, Hinsu DN, Sen DB, Zanwar AS, Maheshwari RA, ChandrakarVR. Analytical method development and validation for simultaneous estimation of teneligliptin hydrobromide hydrate and metformin hydrochloride from its pharmaceutical dosage form by three different UV spectrophotometric methods. J Appl Pharm Sci. 2016; 6(09):157–65. https://doi.org/10.7324/JAPS.2016.60924 DOI: https://doi.org/10.7324/JAPS.2016.60924

Zanwar AS, Sen DB, Ruikar DB, Seth AK. Spectroscopic methods for the simultaneous estimation of mometasone furoate and formoterol fumarate in rotacaps. Indo Am J Pharm Res. 2014; 4(12):5928–32. https://doi.org/10.22159/ ijpps.2019v11i2.24799

ICH, Q2A Text on validation of analytical procedures: Methodology International Conference on Harmonization of technical requirements for registration of pharmaceutical for human use. Geneva, Switzerland; 1996.

Most read articles by the same author(s)

1 2 > >>