An Overview of the Benefits of Indian Spices for High Blood Pressure
DOI:
https://doi.org/10.18311/jnr/2023/33475Keywords:
Anti-inflammatory, Antioxidant, Cardiovascular Diseases, High Blood Pressure, SpicesAbstract
The utilization of herbs, spices, and other plant components has a rich historical background in Indian medicine. In ancient and medieval economies, spices were among the most demanded resources. Although herbalists and alternative medicine practitioners have relied on plants for health and healing for decades, it is only in the last few decades that scientists have begun to investigate the medicinal properties of ordinary herbs and spices. Spices’ anti-hypertensive, anti-hypercholesterolemia, anti-diabetic, and anti-inflammatory characteristics are of utmost relevance in the modern world because of the prevalence of illnesses like diabetes, cardiovascular disease, arthritis, and cancer. Throughout the Middle Ages, people employed herbs and spices for cooking, food preservation, and even medicine. In developing nations like India, where poverty and malnutrition are widespread, a better understanding of plant-derived compounds and spices’ antioxidants and therapeutic effects could lower healthcare expenses. It has been postulated that food significantly impacts the onset of various human diseases, including cardiovascular disease. This manuscript looks at the research on how certain spices, such as garlic, ginger, cardamom, and cinnamon, can affect health problems like hypertension.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Kinjal P. Patel (Author); Rahul Trivedi, Rajesh A. Maheshwari
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-07-25
Published 2023-11-02
References
Gao Q, Xu L, Cai J. New drug targets for hypertension: a literature review. Biochimica et Biophysica Acta (BBA)Molecular Basis of Disease. 2021; 1867(3):166037. https:// doi.org/10.1016/j.bbadis.2020.166037 PMid:33309796 DOI: https://doi.org/10.1016/j.bbadis.2020.166037
Oparil S, Schmieder RE. New approaches in the treatment of hypertension. Circulation research. 2015; 116(6):107495. https://doi.org/10.1161/CIRCRESAHA.116.303603 PMid:25767291 DOI: https://doi.org/10.1161/CIRCRESAHA.116.303603
Verdecchia P, Cavallini C, Angeli F. Advances in the treatment strategies in hypertension: present and future. Journal of Cardiovascular Development and Disease. 2022; 9(3):72. https://doi.org/10.3390/jcdd9030072 PMid: 35323620 PMCid:PMC8949859 DOI: https://doi.org/10.3390/jcdd9030072
Matta VK, Pasala PK, Netala S, Pandrinki S, Konduri P. Antihypertensive Activity of the Ethanolic Extract of Lantana camara leaves on high salt loaded Wistar albino rats. Pharmacognosy Journal. 2015; 7(5):289-295. https://doi.org/10.5530/pj.2015.5.7 DOI: https://doi.org/10.5530/pj.2015.5.7
Tashakori-Sabzevar F, Razavi BM, Imenshahidi M, Daneshmandi M, Fatehi H, Sarkarizi YE, et al. Evaluation of mechanism for antihypertensive and vasorelaxant effects of hexanic and hydroalcoholic extracts of celery seed in normotensive and hypertensive rats. Revista Brasileira de Farmacognosia. 2016; 26:619-26. https://doi.org/10.1016/j.bjp.2016.05.012 DOI: https://doi.org/10.1016/j.bjp.2016.05.012
Tedla YG, Bautista LE. Drug side effect symptoms and adherence to antihypertensive medication. American journal of hypertension. 2016; 29(6):772-9. https://doi.org/10.1093/ajh/hpv185 PMid:26643686 PMCid:PMC5863783
Albasri A, Hattle M, Koshiaris C, Dunnigan A, Paxton B, Fox SE, et al. Association between antihypertensive treatment and adverse events: systematic review and meta-analysis. BMJ. 2021; 10:372. https://doi.org/10.1136/bmj.n189 DOI: https://doi.org/10.1136/bmj.n189
Al Disi SS, Anwar MA, Eid AH. Anti-hypertensive herbs and their mechanisms of action: part I. Frontiers in pharmacology. 2016; 6:323. https://doi.org/10.3389/ fphar.2015.00323 PMid:26834637 PMCid:PMC4717468 DOI: https://doi.org/10.3389/fphar.2015.00323
Driscoll KS, Appathurai A, Jois M, Radcliffe JE. Effects of herbs and spices on blood pressure: a systematic literature review of randomised controlled trials. Journal of hypertension. 2019; 37(4):671-9. https://doi.org/10.1097/HJH.0000000000001952 PMid:30817445 DOI: https://doi.org/10.1097/HJH.0000000000001952
Olowofela AO, Isah AO. A profile of adverse effects of antihypertensive medicines in a tertiary care clinic in Nigeria. Annals of African medicine. 2017; 16(3):114. https://doi.org/10.4103/aam.aam_6_17 PMid:28671151 PMCid:PMC5579894 DOI: https://doi.org/10.4103/aam.aam_6_17
Tedla YG, Bautista LE. Drug side effect symptoms and adherence to antihypertensive medication. American journal of hypertension. 2016; 29(6):772-9. https://doi.org/10.1093/ajh/hpv185 PMid:26643686 PMCid:PMC5863783 DOI: https://doi.org/10.1093/ajh/hpv185
Jiang TA. Health benefits of culinary herbs and spices. Journal of AOAC International. 2019; 102(2):395-411. https://doi.org/10.5740/jaoacint.18-0418 PMid:30651162 DOI: https://doi.org/10.5740/jaoacint.18-0418
Sachdeva A, Sharma A, Bhateja S. Emerging trends of herbs and spices in dentistry. Biomedical Journal. 2018; 2(5):42144218. https://doi.org/10.26717/BJSTR.2018.04.0001125 DOI: https://doi.org/10.26717/BJSTR.2018.04.0001125
Wu CY, Hu HY, Chou YJ, Huang N, Chou YC, Li CP. High blood pressure and all-cause and cardiovascular disease mortalities in community-dwelling older adults. Medicine. 2015; 94(47). https://doi.org/10.1097/MD.0000000000002160 PMid:26632749 PMCid:PMC5059018 DOI: https://doi.org/10.1097/MD.0000000000002160
Saleem U, Riaz S, Ahmad B, Saleem M. Pharmacological screening of Trachyspermumammi for antihyperlipidemic activity in Triton X-100 induced hyperlipidemia rat model. Pharmacognosy research. 2017; 9(Suppl 1):S34. https://doi.org/10.4103/pr.pr_37_17 PMid:29333040 PMCid: PMC5757323 DOI: https://doi.org/10.4103/pr.pr_37_17
Begum M, Sharma BP and Aziz SMB. Ethnobotanical, phytochemical and pharmacological science of Trachyspermum ammi (ajwain): A systematic review. 2021; 12(11):5690-7.
Anwar S, Ahmed N, Habibatni S, Abusamra Y. Ajwain (Trachyspermum ammi L.) oils. In Essential Oils in Food Preservation, Flavor and Safety. 2016; (pp. 181-192). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-416641-7.00019-5
https://doi.org/10.1016/B9780-12-416641-7.00019-5
Asif HM, Sultana S, Akhtar N. A panoramic view on phytochemical, nutritional, ethnobotanical uses and pharmacological values of Trachyspermum ammi Linn. Asian Pacific Journal of Tropical Biomedicine. 2014; 4:S545-53. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0242 DOI: https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0242
Hannan MA, Rahman MA, Sohag AA, Uddin MJ, Dash R, Sikder MH, Rahman MS, et al. Black cumin (Nigella sativa L.): A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients. 2021; 13(6):1784. https://doi.org/10.3390/nu13061784 PMid:34073784 PMCid:PMC8225153 DOI: https://doi.org/10.3390/nu13061784
Enayatfard L, Mohebbati R, Niazmand S, Hosseini M, Shafei MN. The standardized extract of Nigella sativa and its major ingredient, thymoquinone, ameliorates angiotensin II-induced hypertension in rats. Journal of Basic and Clinical Physiology and Pharmacology. 2018; 30(1):51-8.
https://doi.org/10.1515/jbcpp-2018-0074 PMid:30269105 DOI: https://doi.org/10.1515/jbcpp-2018-0074
Rizka A, Setiati S, Lydia A, Dewiasty E. Effect of Nigella sativa seed extract for hypertension in elderly: a double-blind, randomized controlled trial. Acta Medica Indonesiana. 2018; 49(4):307.
Hebi M, Zeggwagh N, Hajj L, El Bouhali B, Eddouks M. Cardiovascular effect of Nigella sativa L. aqueous extract in normal rats. Cardiovascular and Haematological Disorders Drug Targets. 2016; 16:47-55. https://doi.org/10.2174/1871529X16666160729115249 PMid:27605118 DOI: https://doi.org/10.2174/1871529X16666160729115249
Ghoreyshi M, Mahmoudabady M, Bafadam S, Niazmand S. The protective effects of pharmacologic postconditioning of hydroalcoholic extract of Nigella sativa on functional activities and oxidative stress injury during ischemia– reperfusion in isolated rat heart. Cardiovascular Toxicology. 2020; 20:130-8. https://doi.org/10.1007/s12012-01909540-x PMid:31286398 DOI: https://doi.org/10.1007/s12012-019-09540-x
Hassan MQ, Akhtar M, Ahmed S, Ahmad A, Najmi AK. Nigella sativa protects against isoproterenol-induced myocardial infarction by alleviating oxidative stress, biochemical alterations, and histological damage. Asian Pacific Journal of Tropical Biomedicine. 2017; 7(4):294-9. https://doi.org/10.1016/j.apjtb.2016.12.020 DOI: https://doi.org/10.1016/j.apjtb.2016.12.020
Hussain N, Majid SA, Abbasi MS, Hussain MA, Rehman K, Khan MQ, Dar ME, Shaheen H, Habib T. Use of black seed (Nigella sativa L.) oil in the management of hypertensive and hyperlipidemic individuals of district Muzaffarabad, Azad Kashmir, Pakistan. Applied Ecology and Environmental Research. 2017; 15(4). https://doi.org/10.15666/aeer/1504_031048 DOI: https://doi.org/10.15666/aeer/1504_031048
Danaei GH, Memar B, Ataee R, Karami M. Protective effect of thymoquinone, the main component of Nigella Sativa, against diazinon cardiotoxicity in rats. Drug and Chemical Toxicology. 2019; 42(6):585-91. https://doi.org/10.1080/014 80545.2018.1454459 PMid:29648463 DOI: https://doi.org/10.1080/01480545.2018.1454459
Beegum N, Reshmi R, Nandan N, Raj SN, Vishwanathan S. Spices - An imperative melange - back to the roots. J Ayurveda Integr Med Sci. 2019; 6:93-103.
Zahedi SG, Koohdani F, Qorbani M, Siassi F, Keshavarz A, Nasli-Esfahani E, Aghasi M, Khoshamal H, Sotoudeh G. The effects of green cardamom supplementation on blood pressure and endothelium function in type 2 diabetic patients: a study protocol for a randomized controlled clinical trial. Medicine. 2020; 99(18). https://doi.org/10.1097/MD.0000000000011005 PMid:32358339 PMCid:PMC7440108 DOI: https://doi.org/10.1097/MD.0000000000011005
Yahyazadeh R, Rahbardar MG, Razavi BM, Karimi G, Hosseinzadeh H. The effect of Elettaria cardamomum (cardamom) on the metabolic syndrome: Narrative review. Iranian Journal of Basic Medical Sciences. 2021; 24(11):1462.
Fatemeh Y, Siassi F, Rahimi A, Koohdani F, Doostan F, Qorbani M, Sotoudeh G. The effect of cardamom supplementation on serum lipids, glycemic indices, and blood pressure in overweight and obese pre-diabetic women: a randomized controlled trial. Journal of Diabetes and Metabolic Disorders. 2017; 16:1-9. https://doi.org/10.1186/s40200-017-0320-8 PMid:29026804 PMCid:PMC5623966 DOI: https://doi.org/10.1186/s40200-017-0320-8
Ashokkumar K, Murugan M, Dhanya MK, Raj S, Kamaraj D. Phytochemical variations among four distinct varieties of Indian cardamom Elettaria cardamomum (L.) Maton. Natural product research. 2020; 34(13):1919-22. https://doi.org/10.1080/14786419.2018.1561687 PMid:30663385 DOI: https://doi.org/10.1080/14786419.2018.1561687
Souissi M, Azelmat J, Chaieb K, Grenier D. Antibacterial and anti-inflammatory activities of cardamom (Elettaria cardamomum) extracts: Potential therapeutic benefits for periodontal infections. Anaerobe. 2020; 61:102089. https://doi.org/10.1016/j.anaerobe.2019.102089 PMid:31430531 DOI: https://doi.org/10.1016/j.anaerobe.2019.102089
Sk K, Vs A, Paul–Prasanth B, Ab RS, P UD. Aqueous extract of large cardamom inhibits vascular damage, oxidative stress, and metabolic changes in fructose-fed hypertensive rats. Clinical and Experimental Hypertension. 2021; 43(7):622-32. https://doi.org/10.1080/10641963.2021.1925 682 PMid:34281445 DOI: https://doi.org/10.1080/10641963.2021.1925682
Kawatra P, Rajagopalan R. Cinnamon: Mystic powers of a minute ingredient. Pharmacognosy research. 2015; 7(Suppl 1):S1. https://doi.org/10.4103/0974-8490.157990 PMid:26109781 PMCid:PMC4466762 DOI: https://doi.org/10.4103/0974-8490.157990
Sharma P, Savita N, Sharma A. Management of hypertension with natural herbs. 2021.
Anderson RA, Zhan Z, Luo R, Guo X, Guo Q, Zhou J, Kong J, Davis PA, Stoecker BJ. Cinnamon extract lowers glucose, insulin, and cholesterol in people with elevated serum glucose. Journal of traditional and complementary medicine. 2016; 6(4):332-6. https://doi.org/10.1016/j.jtcme.2015.03.005 PMid:27774415 PMCid:PMC5067830 DOI: https://doi.org/10.1016/j.jtcme.2015.03.005
Ranasinghe P, Jayawardena R, Pigera S, Wathurapatha WS, Weeratunga HD, Premakumara GS, Katulanda P, Constantine GR, Galappaththy P. Evaluation of pharmacodynamic properties and safety of Cinnamomum zeylanicum (Ceylon cinnamon) in healthy adults: a phase I clinical trial. BMC complementary and alternative medicine. 2017; 17:1-9. https://doi.org/10.1186/s12906-017-2067-7 PMid:29282046 PMCid:PMC5745724 DOI: https://doi.org/10.1186/s12906-017-2067-7
Mollazadeh H, Hosseinzadeh H. Cinnamon effects on metabolic syndrome: a review based on its mechanisms. Iranian journal of basic medical sciences. 2016; 19(12):1258.
Wu T, Huang W, He M, Yue R. Effects of cinnamon supplementation on lipid profiles among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis. Complementary Therapies in Clinical Practice. 2022; 101625. https://doi.org/10.1016/j.ctcp.2022.101625 PMid:35803022 DOI: https://doi.org/10.1016/j.ctcp.2022.101625
Önder A. Coriander and its phytoconstituents for the beneficial effects. Potential of essential oils. 2018; 165. https://doi.org/10.5772/intechopen.78656 DOI: https://doi.org/10.5772/intechopen.78656
Zeb F, Safdar M, Fatima S, Khan S, Alam S, Muhammad M, Syed A, Habib F, Shakoor H. Supplementation of garlic and coriander seed powder: Impact on body mass index, lipid profile and blood pressure of hyperlipidemic patients. Pakistan Journal of Pharmaceutical Sciences. 2018; 31(5).
Dhyani N, Parveen A, Siddiqi A, Hussain ME, Fahim M. Cardioprotective Efficacy of Coriandrum sativum (L.) Seed Extract in Heart Failure Rats Through Modulation of Endothelin Receptors and Antioxidant Potential. J. Diet. Suppl. 2020; 17:13–26. https://doi.org/10.1080/19390211.2018.1481483 PMid:30299180 DOI: https://doi.org/10.1080/19390211.2018.1481483
Mahleyuddin NN, Moshawih S, Ming LC, Zulkifly HH, Kifli N, Loy MJ, Sarker MM, Al-Worafi YM, Goh BH, Thuraisingam S, Goh HP. Coriandrum sativum L.: A review on ethnopharmacology, phytochemistry, and cardiovascular benefits. Molecules. 2021; 27(1):209. https://doi.org/10.3390/ molecules27010209 PMid:35011441 PMCid:PMC8747064 DOI: https://doi.org/10.3390/molecules27010209
Scandar S, Zadra C, Marcotullio MC. Coriander (Coriandrum sativum) polyphenols and their nutraceutical value against obesity and metabolic syndrome. Molecules. 2023; 28(10):4187. https://doi.org/10.3390/molecules28104187 PMid:37241925 PMCid:PMC10220854 DOI: https://doi.org/10.3390/molecules28104187
Ashraf R, Ghufran S, Akram S, Mushtaq M, Sultana B. Cold pressed coriander (Coriandrum sativum L.) seed oil. In Cold Pressed Oils. 2020; pp. 345-356. Academic Press.
https://doi.org/10.1016/B978-0-12-818188-1.00031-1 PMid:31343742 DOI: https://doi.org/10.1016/B978-0-12-818188-1.00031-1
Batiha EG, Beshbishy MA, Wasef GL, Elewa YH, Al-Sagan A, Abd El-Hack ME, Taha AE, M. Abd-Elhakim Y, Devkota PH. Chemical constituents, and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients. 2020; 12(3):872. https://doi.org/10.3390/nu12030872 PMid:32213941 PMCid: PMC7146530 DOI: https://doi.org/10.3390/nu12030872
Motta JP, Flannigan KL, Agbor TA, Beatty JK, Blackler RW, Workentine ML, Da Silva GJ, Wang R, Buret AG, Wallace JL. Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflammatory bowel diseases. 2015; 21(5):1006-17. https://doi.org/10.1097/MIB.0000000000000345 PMid:25738373 DOI: https://doi.org/10.1097/MIB.0000000000000345
Ried K. Garlic lowers blood pressure in hypertensive individuals, regulates serum cholesterol, and stimulates immunity: an updated meta-analysis and review. The Journal of Nutrition. 2016; 146(2):389S-96S. https://doi.org/10.3945/jn.114.202192 PMid:26764326 DOI: https://doi.org/10.3945/jn.114.202192
Liu C, Huang Y. Chinese herbal medicine on cardiovascular diseases and the mechanisms of action. Frontiers in pharmacology. 2016; 7:469. https://doi.org/10.3389/fphar.2016.00469 PMid:27990122 PMCid:PMC5130975 DOI: https://doi.org/10.3389/fphar.2016.00469
Mahdavi-Roshan M, Nasrollahzadeh J, Zadeh AM, Zahedmehr A. Does garlic supplementation control blood pressure in patients with severe coronary artery disease? A clinical trial study. Iranian Red Crescent Medical Journal. 2016; 18(11). https://doi.org/10.5812/ircmj.23871 PMid:28191330 PMCid:PMC5292129 DOI: https://doi.org/10.5812/ircmj.23871
Sasi M, Kumar S, Kumar M, Thapa S, Prajapati U, Tak Y, Changan S, Saurabh V, Kumari S, Kumar A, Hasan M. Garlic (Allium sativum L.) Bioactive and its role in alleviating oral pathologies. Antioxidants. 2021; 10(11):1847. https://doi.org/10.3390/antiox10111847 PMid:34829718 PMCid: PMC8614839 DOI: https://doi.org/10.3390/antiox10111847
Macit MS, Sözlü S, Kocaadam B, Acar-Tek N. Evaluation of ginger (Zingiber officinale Roscoe) on energy metabolism and obesity: systematic review and meta-analysis. Food Reviews International. 2019; 35(7):685-706. https://doi.org/10.1080/87559129.2019.1608556 DOI: https://doi.org/10.1080/87559129.2019.1608556
Zhang M, Zhao R, Wang D, Wang L, Zhang Q, Wei S, Lu F, Peng W, Wu C. Ginger (Zingiber officinale Roscoe) and its bioactive components are potential resources for health beneficial agents. Phytotherapy Research. 2021; 35(2):71142. https://doi.org/10.1002/ptr.6858 PMid:32954562 DOI: https://doi.org/10.1002/ptr.6858
Shaban MI, EL-Gahsh NF, El-said A, El-sol H. Ginger: It’s the effect on blood pressure among hypertensive patients. IOSR Journal of Nursing and Health Science. 2017; 6(5):79-86.
Radice M, Maddela NR, Scalvenzi L. Biological Activities of Zingiber officinale Roscoe essential oil against Fusarium spp.: A minireview of a promising tool for Biocontrol. Agronomy. 2022; 12(5):1168. https://doi.org/10.3390/agronomy12051168
Wu HC, Horng CT, Tsai SC, Lee YL, Hsu SC, Tsai YJ, Tsai FJ, Chiang JH, Kuo DH, Yang JS. Relaxant and Vaso protective effects of ginger extracts on porcine coronary arteries. International Journal of Molecular Medicine. 2018; 41(4):2420-8. https://doi.org/10.3892/ijmm.2018.3380 DOI: https://doi.org/10.3892/ijmm.2018.3380
Li C, Li J, Jiang F, Tzvetkov NT, Horbanczuk JO, Li Y, Atanasov AG, Wang D. Vasculoprotective effects of ginger (Zingiber officinale Roscoe) and underlying molecular mechanisms. Food and function. 2021; 12(5):1897-913. https://doi.org/10.1039/D0FO02210A PMid:33592084 DOI: https://doi.org/10.1039/D0FO02210A
Subbaiah GV, Mallikarjuna K, Shanmugam B, Ravi S, Taj PU, Reddy KS. Ginger treatment ameliorates alcohol-induced myocardial damage by suppression of hyperlipidemia and cardiac biomarkers in rats. Pharmacognosy Magazine. 2017; 13(Suppl 1):S69. https://doi.org/10.4103/0973-1296.203891 PMid:28479729 PMCid:PMC5407119 DOI: https://doi.org/10.4103/0973-1296.203891
Radice M, Maddela NR, Scalvenzi L. Biological Activities of Zingiber officinale Roscoe essential oil against Fusarium spp.: A minireview of a promising tool for Biocontrol. Agronomy. 2022; 12(5):1168. https://doi.org/10.3390/agronomy12051168 DOI: https://doi.org/10.3390/agronomy12051168
Nagulapalli Venkata KC, Swaroop A, Bagchi D, Bishayee A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol Nutr Food Res. 2017; 61:1–26. https://doi.org/10.1002/mnfr.201600950 PMid:28266134 DOI: https://doi.org/10.1002/mnfr.201600950
Heshmat‐Ghahdarijani K, Mashayekhiasl N, Amerizadeh A, Jervekani TZ, Sadeghi M. Effect of fenugreek consumption on serum lipid profile: A systematic review and metaanalysis. Phytotherapy research. 2020; 34(9):2230-45. https://doi.org/10.1002/ptr.6690 PMid:32385866 DOI: https://doi.org/10.1002/ptr.6690
Almatroodi SA, Almatroudi A, Alsahli MA, Rahmani AH. Fenugreek (Trigonella foenum-graecum) and its active compounds: A review of its effects on human health through modulating biological activities. Pharmacognosy Journal. 2021; 13(3):813-21. https://doi.org/10.5530/pj.2021.13.103
Wankhede S, Mohan V, Thakurdesai P. Beneficial effects of fenugreek glycoside supplementation in male subjects during resistance training: a randomized controlled pilot study. Journal of Sport and Health Science. 2016; 5(2):17682. https://doi.org/10.1016/j.jshs.2014.09.005 PMid:30356905 PMCid:PMC6191980 DOI: https://doi.org/10.1016/j.jshs.2014.09.005
Filippini T, Naska A, Kasdagli MI, Torres D, Lopes C, Carvalho C, Moreira P, Malavolti M, Orsini N, Whelton PK, Vinceti M. Potassium intake and blood pressure: a dose‐response meta‐analysis of randomized controlled trials. Journal of the American Heart Association. 2020; 9(12):e015719. https://doi.org/10.1161/JAHA.119.015719 PMid:32500831 PMCid:PMC7429027 DOI: https://doi.org/10.1161/JAHA.119.015719
Almatroodi SA, Almatroudi A, Alsahli MA, Rahmani AH. Fenugreek (Trigonella foenum-graecum) and its active compounds: a review of its effects on human health through modulating biological activities. Pharmacognosy Journal. 2021; 13(3). https://doi.org/10.5530/pj.2021.13.103 DOI: https://doi.org/10.5530/pj.2021.13.103
Amoo SO, Okorogbona AO, Du Plooy CP, Venter SL. Sesamum indicum. InMedicinal spices and vegetables from Africa. 2017; pp. 549-579. Academic Press. https://doi.org/10.1016/B978-0-12-809286-6.00026-1 DOI: https://doi.org/10.1016/B978-0-12-809286-6.00026-1
Wang DD, Li Y, Chiuve SE, Stampfer MJ, Manson JE, Rimm EB, et al. Association of specific dietary fats with total and causespecific mortality. JAMA internal medicine. 2016; 176(8):113445. https://doi.org/10.1001/jamainternmed.2016.2417 PMid: 27379574 PMCid:PMC5123772 DOI: https://doi.org/10.1001/jamainternmed.2016.2417
Sacks FM, Lichtenstein AH, Wu JH, Appel LJ, Creager MA, Kris-Etherton PM, et al. Dietary fats and cardiovascular disease: a presidential advisory from the American Heart Association. Circulation. 2017; 136(3):e1-23. https://doi.org/10.1161/CIR.0000000000000510 PMid:28620111 DOI: https://doi.org/10.1161/CIR.0000000000000510
Maki KC, Eren F, Cassens ME, Dicklin MR, Davidson MH.ω-6 polyunsaturated fatty acids and cardiometabolic health: current evidence, controversies, and research gaps. Advances in Nutrition. 2018; 9(6):688-700. https://doi.org/10.1093/ advances/nmy038 PMid:30184091 PMCid:PMC6247292 DOI: https://doi.org/10.1093/advances/nmy038
Ostlund Jr RE. Phytosterols and cholesterol metabolism. Current opinion in lipidology. 2004; 15(1):37-41. https://doi.org/10.1097/00041433-200402000-00008 PMid:15166807 DOI: https://doi.org/10.1097/00041433-200402000-00008
Caldwell M, Martinez L, Foster JG, Sherling D, Hennekens CH. Prospects for the primary prevention of myocardial infarction and stroke. Journal of cardiovascular pharmacology and therapeutics. 2019; 24(3):207-14. https://doi.org/10.1177/1074248418817344 PMid:30563358 DOI: https://doi.org/10.1177/1074248418817344
Schutten JC, Joosten MM, de Borst MH, Bakker SJ. Magnesium and blood pressure: a physiology-based approach. Advances in chronic kidney disease. 2018; 25(3):244-50. https://doi.org/10.1053/j.ackd.2017.12.003 PMid:29793663 DOI: https://doi.org/10.1053/j.ackd.2017.12.003
Khosravi‐Boroujeni H, Nikbakht E, Natanelov E, Khalesi S. Can sesame consumption improve blood pressure? A systematic review and meta‐analysis of controlled trials. Journal of the Science of Food and Agriculture. 2017; 97(10):3087-94. https://doi.org/10.1002/jsfa.8361 PMid:28387047 DOI: https://doi.org/10.1002/jsfa.8361
Wichitsranoi J, Weerapreeyakul N, Boonsiri P, Settasatian C, Settasatian N, Komanasin N, et al. Antihypertensive and antioxidant effects of dietary black sesame meal in prehypertensive humans. Nutrition journal. 2011; 10(1):1-7. https://doi.org/10.1186/1475-2891-10-82 PMid:21827664 PMCid:PMC3173298 DOI: https://doi.org/10.1186/1475-2891-10-82
Sachan N, Saraswat N, Chandra P, Khalid M, Kabra A. Isolation of thymol from Trachyspermum ammi fruits for treatment of diabetes and diabetic neuropathy in STZ induced rats. BioMed Research International. 2022. https://doi.org/10.1155/2022/8263999 PMid:35528161 PMCid:PMC9071892 DOI: https://doi.org/10.1155/2022/8263999
Wei P, Zhao F, Wang Z, Wang Q, Chai X, Hou G, Meng Q. Sesame (Sesamum indicum L.): A comprehensive review of nutritional value, phytochemical composition, health benefits, development of food, and industrial applications. Nutrients. 2022; 14(19):4079. https://doi.org/10.3390/nu14194079 PMid:36235731 PMCid:PMC9573514 DOI: https://doi.org/10.3390/nu14194079
Li D, Wang R, Huang J, Cai Q, Yang CS, Wan X. Effects, and mechanisms of tea regulating blood pressure: evidence and promises. Nutrients. 2019; 11(5):1115. https://doi.org/10.3390/nu11051115 PMid:31109113 PMCid:PMC6567086 DOI: https://doi.org/10.3390/nu11051115
Redford KE, Rognant S, Jepps TA, Abbott GW. KCNQ5 potassium channel activation underlies vasodilation by tea. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology. 2021; 55(Suppl 3):46. https://doi.org/10.33594/000000337 PMid:33667331 PMCid:PMC8612027 DOI: https://doi.org/10.33594/000000337
Teramoto M, Yamagishi K, Muraki I, Tamakoshi A, Iso H. Coffee and green tea consumption and
cardiovascular disease mortality among people with and without hypertension. Journal of the American Heart Association. 2023; 12(2):e026477. https://doi.org/10.1161/JAHA.122.026477 PMid:36542728 PMCid:PMC9939061 DOI: https://doi.org/10.1161/JAHA.122.026477
Manville RW, van der Horst J, Redford KE, Katz BB, Jepps TA, Abbott GW. KCNQ5 activation is a unifying molecular mechanism shared by genetically and culturally diverse botanical hypotensive folk medicines. Proceedings of the National Academy of Sciences. 2019; 116(42):21236-45.
https://doi.org/10.1073/pnas.1907511116 PMid:31570602 PMCid:PMC6800379 DOI: https://doi.org/10.1073/pnas.1907511116
Garcia ML, Pontes RB, Nishi EE, Ibuki FK, Oliveira V, Sawaya AC, Carvalho PO, Nogueira FN, do Carmo Franco M, Campos RR, Oyama LM. The antioxidant effects of green tea reduce blood pressure and sympatho excitation in an experimental model of hypertension. Journal of hypertension. 2017; 35(2):348-54. https://doi.org/10.1097/HJH.0000000000001149 PMid:28005704 DOI: https://doi.org/10.1097/HJH.0000000000001149
Shahrajabian M, Sun W, Cheng Q. Importance of epigallocatechin, and its health benefits. Free Radicals and Antioxidants. 2020; 10(2):47-51. https://doi.org/10.5530/fra.2020.2.9 DOI: https://doi.org/10.5530/fra.2020.2.9