A Review on Extraction of Tannins and Quantitative Determination of Ellagic Acid Using Different Analytical Methods
DOI:
https://doi.org/10.18311/jnr/2024/36080Keywords:
Analytical Method, Ellagic Acid, Extraction, TanninsAbstract
Tannins, integral to plant survival, serve diverse functions from herbivore defence to influencing plant development. Classified into hydrolyzable and condensed types, these water-soluble polyphenols contribute to the nutritional profile of plant-based meals, offering taste, colour, and potential health benefits. Extraction methods, including solvent and ultrasonic-assisted techniques, play a crucial role in obtaining concentrated tannins. Ellagic acid, abundant in plants like strawberries and grapes, garners attention for its health-promoting properties. Analytical methods such as spectrophotometry and chromatography, including HPLC, enable the precise identification and quantification of ellagic acid. These tools contribute to a deeper understanding of plant chemistry and its potential health implications. In a nutshell, tannins go beyond herbivore defence, influencing plant biology and human health. This review highlights their diverse roles, extraction methods, and the significance of ellagic acid, providing insights into the intricate world of plant polyphenols.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2024 Dhanya B. Sen, Ashim Kumar Sen, Aarti Zanwar, Dillip Dash, Rajesh A. Maheshwari (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2024-03-27
Published 2024-05-28
References
Hagerman AE. Tannin Handbook. Miami University. Oxford, OH; 2002.
Pizzi A. Tannins: Major sources, properties and applications. In: Belgacem MN, Gandini A, editors. Monomers, polymers and composites from renewable resources. Amsterdam: Elsevier; 2008. https://doi.org/10.1016/B978-0-08-045316-3.00008-9
Ramakrishnan K, Krishnan MRV. Tannin–classification, analysis and applications. Anc Sci Life. 1994; 13(3-4):232-8.
Sharma KP. Tannin degradation by phytopathogen’s tannase: A Plant’s defense perspective. Biocatal Agric Biotechnol 2019; 21. https://doi.org/10.1016/j.bcab.2019.101342
Khanbabaee K, Van Ree T. Tannins: classification and definition. Nat Prod Rep. 2001; 18(6):641-9. https://doi.org/10.1039/b101061l
Lewis NG, Yamamoto E. Tannins—their place in plant metabolism. In: Hemingway RW, Karchesy JJ, Branham SJ, editors. Chemistry and significance of condensed tannins. Boston, MA: Springer; 1989. https://doi.org/10.1007/978-1-4684-7511-1_2
Barbehenn RV, Constabel CP. Tannins in plant–herbivore interactions. Phytochem. 2011; 72(13):1551-65. https://doi.org/10.1016/j.phytochem.2011.01.040
Giovando S, Koch G, Romagnoli M, Paul D, Vinciguerra V, Tamantini S, et al. Spectro-topochemical investigation of the location of polyphenolic extractives (tannins) in chestnut wood structure and ultrastructure. Ind Crop Prod. 2019; 141. https://doi.org/10.1016/j.indcrop.2019.111767
Tomak ED, Gonultas O. The wood preservative potentials of valonia, chestnut, tara and sulphited oak tannins. J Wood Chem Technol. 2018; 38(3):183-97. https://doi.org/10.1080/02773813.2017.1418379
Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: A review. Crit Rev Food Sci Nutr. 1998; 38(6):421-64. https://doi.org/10.1080/10408699891274273
Freudenberg K. Die chemie der natürlichen gerbstoffe. In: Freudenberg K, editor. Tannin Cellulose-Lignin. Berlin, Heidelberg: Springer; 1933. https://doi.org/10.1007/978-3-642-49873-2_2
Swain T. The tannins. In: Bonner J, Varner JE, Editors. Plant Biochemistry. New York: Academic Press; 1965. https://doi.org/10.1016/B978-1-4832-3243-0.50026-5
Møller C, Hansen SH, Cornett C. Characterisation of tannin‐containing herbal drugs by HPLC. Phytochem Anal. 2009; 20(3):231-9. https://doi.org/10.1002/pca.1119
Das AK, Islam MN, Faruk MO, Ashaduzzaman M, Dungani R. Review on tannins: Extraction processes, applications and possibilities. S Afr J Bot. 2020; 135:58-70. https://doi.org/10.1016/j.sajb.2020.08.008
Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: A review. Crit Rev Food Sci Nutr. 1998; 38(6):421-64. https://doi.org/10.1080/10408699891274273
Salunkhe DK, Jadhav SJ, Kadam SS, Chavan JK. Chemical, biochemical, and biological significance of polyphenols in cereals and legumes. Crit Rev Food Sci Nutr. 1983; 17(3):277-305. https://doi.org/10.1080/10408398209527350
Hulse JH. Polyphenols in cereals and legumes: Proceedings of a Symposium. IDRC, Ottawa, ON, CA; 1980. https://www.cabidigitallibrary.org/doi/full/10.5555/19820731097
Frutos P, Hervas G, Giráldez FJ, Mantecón AR. Tannins and ruminant nutrition. Span J Agric Res. 2004; 2(2):191-202. https://doi.org/10.5424/sjar/2004022-73.
Deshpande SS, Sathe SK, Salunkhe DK. Chemistry and safety of plant polyphenols. In: Friedman M, editor. Nutritional and toxicological aspects of food safety. Boston, MA: Springer; 1984. https://doi.org/10.1007/978-1-4684-4790-3_22
Thompson RS, Jacques D, Haslam E, Tanner RJ. Plant proanthocyanidins. Part I. Introduction; the isolation, structure, and distribution in nature of plant procyanidins. J Chem Soc Perkin Trans 1. 1972; 1:1387-99. https://doi.org/10.1039/P19720001387
Goldstein JL, Swain T. Changes in tannin in ripening fruit. Phytochem. 1963; 2(4):371-83. https://doi.org/10.1016/S0031-9422(00)84860-8
Barnell HR, Barnell E. Studies in tropical fruits: XVI. The distribution of tannins within banana and changes in their condition and amount during ripening. Ann Bot. 1945; 9(33):77-93. https://doi.org/10.1093/oxfordjournals.aob.a088577
Haslam E. Symmetry and promiscuity in procyanidin biochemistry. Phytochem. 1977; 16(11):1625-40. https://doi.org/10.1016/0031-9422(71)85060-4
Hoff JE, Singleton KI. A method for determination of tannins in foods by means of immobilized protein. J Food Sci. 1977; 42(6):1566-9. https://doi.org/10.1111/j.1365-2621.1977.tb08427.x
Lyoyd FE. The behaviour of tannin in persimmons with some notes on ripening. The Plant World. 1911; 14(1):1-14. https://www.jstor.org/stable/43476836
Reeve RM. Histological and histochemical changes in developing and ripening peaches. III. Catechol tannin content per cell. Am J Bot. 1959; 46(9):645-50. https://doi.org/10.1002/j.1537-2197.1959.tb07065.x
Sanderson GW, Ranadive AS, Eisenberg LS, Farrell FJ, Simons R, Manley CH, et al. Contribution of polyphenolic compounds to the taste of tea. In: Charalambous G, Katz I, editors. Phenolic sulfur and nitrogen compounds in food flavours. Washington DC: ACS Publications; 1975. p. 14-46. https://doi.org/10.1021/bk-1976-0026.ch002
Salunkhe DK, Kadam SS, Chavan JK. Nutritional quality of proteins in grain sorghum. Qual Plant. 1977; 27:187-205. https://doi.org/10.1007/BF01092359.
Jones WT, Mangan JL. Complexes of the condensed tannins of sainfoin (Onobrychis viciifolia Scop.) with fraction 1 leaf protein and with submaxillary mucoprotein, and their reversal by polyethylene glycol and pH. J Sci Food Agric. 1977; 28(2):126-36. https://doi.org/10.1002/JSFA.2740280204
Pizzi A, Baecker A. A new boron fixation mechanism for environment friendly wood preservatives. Holzforschung. 1996; 50(6):507-10. https://doi.org/10.1515/hfsg.1996.50.6.507
Puech JL, Feuillat F, Mosedale JR. The tannins of oak heartwood: Structure, properties, and their influence on wine flavor. Am J Enol Vitic. 1999; 50(4):469-78. https://doi.org/10.5344/ajev.1999.50.4.469
Bimakr M, Rahman RA, Taip FS, Ganjloo A, Salleh LM, Selamat J, et al. Comparison of different extraction methods for the extraction of major bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves. Food Bioprod Process. 2011; 89(1):67-72. https://doi.org/10.1016/j.fbp.2010.03.002
Kemppainen K, Siika-aho M, Pattathil S, Giovando S, Kruus K. Spruce bark as an industrial source of condensed tannins and non-cellulosic sugars. Ind Crop Prod. 2014; 52:158-68. https://doi.org/10.1016/j.indcrop.2013.10.009
Anttila AK, Pirttilä AM, Häggman H, Harju A, Venäläinen M, Haapala A, et al. Condensed conifer tannins as antifungal agents in liquid culture. Holzforschung. 2013; 67(7):825-32. https://doi.org/10.1515/hf-2012-0154
Hmidani A, Khouya T, Ramchoun M, Filali-zegzouti Y, Benlyas M, Alem C. Effect of extraction methods on antioxidant and anticoagulant activities of Thymus atlanticus aerial part. Sci Afr. 2019; 5. https://doi.org/10.1016/j.sciaf.2019.e00143
Yalcin M, Ceylan H. The effects of tannins on adhesion strength and surface roughness of varnished wood after accelerated weathering. J Coat Technol Res. 2017; 14:185-93. https://doi.org/10.1007/s11998-016-9841-1
Bello A, Virtanen V, Salminen JP, Leiviskä T. Aminomethylation of spruce tannins and their application as coagulants for water clarification. Sep Purif Technol. 2020; 242. https://doi.org/10.1016/j.seppur.2020.116765
Baaka N, Ammar M, Saad MK, Khiari R. Properties of tannin-glyoxal resins prepared from lyophilized and condensed tannin. J Text Eng Fash Technol. 2017; 3(4):705-11. https://doi.org/10.15406/jteft.2017.03.00110
Dentinho MT, Paulos K, Francisco A, Belo AT, Jerónimo E, Almeida J, et al. Effect of soybean meal treatment with Cistus ladanifer condensed tannins in growth performance, carcass and meat quality of lambs. Livest Sci. 2020; 236. https://doi.org/10.1016/j.livsci.2020.104021
Kotze M, Eloff JN, Houghton PJ. Extraction of antibacterial compounds from Combretum microphyllum (Combretaceae). S Afr J Bot. 2002; 68(1):62-7. https://doi.org/10.1016/S0254-6299(16)30456-2
Meng J, Lin X, Zhou J, Zhang R, Chen Y, Long X. Preparation of tannin-immobilized gelatin/PVA nanofiber band for extraction of uranium (VI) from simulated seawater. Ecotoxicol Environ Saf. 2019; 170:9-17. https://doi.org/10.1016/j.ecoenv.2018.11.089
Poaty B, Dumarçay S, Gérardin P, Perrin D. Modification of grape seed and wood tannins to lipophilic antioxidant derivatives. Ind Crop Prod. 2010; 31(3):509-15. https://doi.org/10.1016/j.indcrop.2010.02.003
Scalbert A, Monties B, Janin G. Tannins in wood: Comparison of different estimation methods. J Agric Food Chem. 1989; 37(5):1324-9. https://doi.org/10.1021/jf00089a026
Würger G, McGaw LJ, Eloff JN. Tannin content of leaf extracts of 53 trees used traditionally to treat diarrhoea is an important criterion in selecting species for further work. S Afr J Bot. 2014; 90:114-7. https://doi.org/10.1016/j.sajb.2013.11.003
Case PA, Bizama C, Segura C, Wheeler MC, Berg A, DeSisto WJ. Pyrolysis of pre-treated tannins obtained from radiata pine bark. J Anal Appl Pyrolysis. 2014; 107:250-5. https://doi.org/10.1016/j.jaap.2014.03.009
Naima R, Oumam M, Hannache H, Sesbou A, Charrier B, Pizzi A, et al. Comparison of the impact of different extraction methods on polyphenols yields and tannins extracted from Moroccan Acacia mollissima barks. Ind Crop Prod. 2015; 70:245-52. https://doi.org/10.1016/j.indcrop.2015.03.016
Rhazi N, Hannache H, Oumam M, Sesbou A, Charrier B, Pizzi A, et al. Green extraction process of tannins obtained from Moroccan Acacia mollissima barks by microwave: Modeling and optimization of the process using the response surface methodology RSM. Arab J Chem. 2019; 12(8):2668-84. https://doi.org/10.1016/j.arabjc.2015.04.032
Antwi-Boasiako C, Animapauh SO. Tannin extraction from the barks of three tropical hardwoods for the production of adhesives. J Appl Sci Res. 2012; 8(6):2959-65.
Guo L, Qiang T, Ma Y, Wang K, Du K. Optimisation of tannin extraction from Coriaria nepalensis bark as a renewable resource for use in tanning. Ind Crop Prod. 2020; 149. https://doi.org/10.1016/j.indcrop.2020.112360
De Hoyos-Martínez PL, Merle J, Labidi J, Charrier–El Bouhtoury F. Tannins extraction: A key point for their valorization and cleaner production. J Clean Prod. 2019; 206:1138-55. https://doi.org/10.1016/j.jclepro.2018.09.243
Romero R, Contreras D, Sepúlveda M, Moreno N, Segura C, Melin V. Assessment of a Fenton reaction driven by insoluble tannins from pine bark in treating an emergent contaminant. J Hazard Mater. 2020; 382. https://doi.org/10.1016/j.jhazmat.2019.120982
Duraisamy R, Shuge T, Worku B, Berekete AK, Ramasamy KM. Extraction, screening and spectral characterization of tannins from Acacia xanthophloea (Fever Tree) Bark. Res J Text Leather. 2020; 1(1):1-10. https://doi.org/10.46590/rjtl.2020.010101
Medini F, Fellah H, Ksouri R, Abdelly C. Total phenolic, flavonoid and tannin contents and antioxidant and antimicrobial activities of organic extracts of shoots of the plant Limonium delicatulum. J Taibah Univ Sci. 2014; 8(3):216-24. https://doi.org/10.1016/j.jtusci.2014.01.003
Luo X, Bai R, Zhen D, Yang Z, Huang D, Mao H, et al. Response surface optimization of the enzyme-based ultrasound-assisted extraction of acorn tannins and their corrosion inhibition properties. Ind Crop Prod. 2019; 129:405-13. https://doi.org/10.1016/j.indcrop.2018.12.029
Gou X, Okejiri F, Zhang Z, Liu M, Liu J, Chen H, et al. Tannin-derived bimetallic CuCo/C catalysts for an efficient in-situ hydrogenation of lauric acid in methanol-water media. Fuel Process Technol. 2020; 205:106426. https://doi.org/10.1016/j.fuproc.2020.106426
Gao Y, Zietsman AJ, Vivier MA, Moore JP. Deconstructing wine grape cell walls with enzymes during winemaking: New insights from glycan microarray technology. Molecules. 2019; 24(1). https://doi.org/10.3390/molecules24010165
Osete-Alcaraz A, Gómez-Plaza E, Martínez-Pérez P, Weiller F, Schückel J, Willats WG, et al. The impact of carbohydrate-active enzymes on mediating cell wall polysaccharide-tannin interactions in a wine-like matrix. Food Res Int. 2020; 129. https://doi.org/10.1016/j.foodres.2019.108889
Arnous A, Meyer AS. Discriminated release of phenolic substances from red wine grape skins (Vitis vinifera L.) by multicomponent enzymes treatment. Biochem Eng J. 2010; 49(1):68-77. https://doi.org/10.1016/j.bej.2009.11.012
Li BB, Smith B, Hossain MM. Extraction of phenolics from citrus peels: II. Enzyme-assisted extraction method. Sep Purif Technol. 2006; 48(2):189-96. https://doi.org/10.1016/j.seppur.2005.07.019
Pinelo M, Arnous A, Meyer AS. Upgrading of grape skins: Significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci Technol. 2006; 17(11):579-90. https://doi.org/10.1016/j.tifs.2006.05.003
Petchidurai G, Nagoth JA, John MS, Sahayaraj K, Murugesan N, Pucciarelli S. Standardization and quantification of total tannins, condensed tannin and soluble phlorotannins extracted from thirty-two drifted coastal macroalgae using high performance liquid chromatography. Bioresour Technol Rep. 2019; 7. https://doi.org/10.1016/j.biteb.2019.100273
Fraga-Corral M, García-Oliveira P, Pereira AG, Lourenço-Lopes C, Jimenez-Lopez C, Prieto MA, et al. Technological application of tannin-based extracts. Molecules. 2020; 25(3). https://doi.org/10.3390/molecules25030614
Kemppainen K, Siika-Aho M, Pattathil S, Giovando S, Kruus K. Spruce bark as an industrial source of condensed tannins and non-cellulosic sugars. Ind Crop Prod. 2014; 52:158-68. https://doi.org/10.1016/j.indcrop.2013.10.009
Tascioglu C, Yalcin M, Sen S, Akcay C. Antifungal properties of some plant extracts used as wood preservatives. Int Biodeter Biodegradation. 2013; 85:23-8. https://doi.org/10.1016/j.ibiod.2013.06.004
Hussain I, Sanglard M, Bridson JH, Parker K. Preparation and physicochemical characterisation of polyurethane foams prepared using hydroxybutylated condensed tannins as a polyol source. Ind Crop Prod. 2020; 154. https://doi.org/10.1016/j.indcrop.2020.112636
Martins RO, Gomes IC, Telles AD, Kato L, Souza PS, Chaves AR. Molecularly imprinted polymer as solid phase extraction phase for condensed tannin determination from Brazilian natural sources. J Chromatogr A. 2020; 1620. https://doi.org/10.1016/j.chroma.2020.460977
Arina MZI, Harisun Y. Effect of extraction temperatures on tannin content and antioxidant activity of Quercus infectoria (Manjakani). Biocatal Agric Biotechnol. 2019; 19. https://doi.org/10.1016/j.bcab.2019.101104
Bianchi S, Gloess AN, Kroslakova I, Mayer I, Pichelin F. Analysis of the structure of condensed tannins in water extracts from bark tissues of Norway spruce (Picea abies [Karst.]) and Silver fir (Abies alba Mill.) using MALDI-TOF mass spectrometry. Ind Crops Prod. 2014; 61:430-7. https://doi.org/10.1016/j.indcrop.2014.07.038
Erşan S, Üstündağ ÖG, Carle R, Schweiggert RM. Subcritical water extraction of phenolic and antioxidant constituents from pistachio (Pistacia vera L.) hulls. Food Chem. 2018; 253:46-54. https://doi.org/10.1016/j.foodchem.2018.01.116
Yang L, Sun X, Yang F, Zhao C, Zhang L, Zu Y. Application of ionic liquids in the microwave-assisted extraction of proanthocyanidins from Larix gmelini bark. Int J Mol Sci. 2012; 13(4):5163-78. https://doi.org/10.3390/ijms13045163
Cai Y, Yu Y, Duan G, Li Y. Study on infrared-assisted extraction coupled with High Performance Liquid Chromatography (HPLC) for determination of catechin, epicatechin, and procyanidin B2 in grape seeds. Food Chem. 2011; 127(4):1872-7. https://doi.org/10.1016/j.foodchem.2011.02.026
Chen X, Xi X, Pizzi A, Fredon E, Zhou X, Li J, et al. Preparation and characterization of condensed tannin Non-Isocyanate Polyurethane (NIPU) rigid foams by ambient temperature blowing. Polymers. 2020; 12(4). https://doi.org/10.3390/polym12040750
Escobedo R, Miranda R, Martínez J. Infrared irradiation: Toward green chemistry, a review. Int J Mol Sci. 2016; 17(4). https://doi.org/10.3390/ijms17040453
Santos GH, Silva EB, Silva BL, Sena KX, Lima CS. Influence of gamma radiation on the antimicrobial activity of crude extracts of Anacardium occidentale L., Anacardiaceae, rich in tannins. Rev Bras Farmacogn. 2011; 21(3):444-9. https://doi.org/10.1590/S0102-695X2011005000045
Ashraf-Khorassani M, Taylor LT. Sequential fractionation of grape seeds into oils, polyphenols, and procyanidins via a single system employing CO2-based fluids. J Agric Food Chem. 2004; 52(9):2440-4. https://doi.org/10.1021/jf030510n
Talmaciu AI, Ravber M, Volf I, Knez Ž, Popa VI. Isolation of bioactive compounds from spruce bark waste using sub- and supercritical fluids. J Supercrit Fluids. 2016; 117:243-51. https://doi.org/10.1016/j.supflu.2016.07.001
Wang L, Weller CL. Recent advances in extraction of nutraceuticals from plants. Trends Food Sci Technol. 2006; 17(6):300-312. https://doi.org/10.1016/j.tifs.2005.12.004
Yepez B, Espinosa M, López S, Bolanos G. Producing antioxidant fractions from herbaceous matrices by supercritical fluid extraction. Fluid Ph Equilib. 2002; 194-197:879-84. https://doi.org/10.1016/S0378-3812(01)00707-5
Jia-hong C, Dong-mei W, Yong-mei W, Zai-song W. Determination of ellagic acid content by ultraviolet spectrophotometry. Biomass Chem Eng. 2007; 41(3):18-20.
Budavari S. The Merck index. 12th ed. New Jersey: Merck and Co. Inc.; 1996.
Bala I, Bhardwaj V, Hariharan S, Kumar MNVR. Analytical methods for assay of ellagic acid and its solubility studies. J Pharm Biomed Anal. 2006; 40(1):206-10. https://doi.org/10.1016/j.jpba.2005.07.006
Williams DJ, Edwards D, Chaliha M, Sultanbawa Y. Measuring free ellagic acid: Influence of extraction conditions on recovery by studying solubility and UV-visible spectra. Chem Pap. 2016; 70:1078-86. https://doi.org/10.1515/chempap-2016-0038
Aaby K, Ekeberg D, Skrede G. Characterization of phenolic compounds in strawberry (Fragaria x ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J Agric Food Chem. 2007; 55(11):4395-406. https://doi.org/10.1021/jf0702592
Hasegawa M, Terauchi M, Kikuchi Y, Nakao A, Okubo J, Yoshinaga T, et al. Deprotonation processes of ellagic acid in solution and solid states. Monatsh Chem. 2003; 134(6):811-21. https://doi.org/10.1007/s00706-002-0552-1
Wilson TC, Hagerman AE. Quantitative determination of ellagic acid. J Agric Food Chem. 1990; 38(8):1678-83. https://doi.org/10.1021/jf00098a011
Press RE, Hardcastle D. Some physico-chemical properties of ellagic acid. Journal of Applied Chemistry. 2007; 19(9):247-51. https://doi.org/10.1002/jctb.5010190903
Goriparti S, Harish MNK, Sampath S. Ellagic acid – A novel organic electrode material for high capacity lithium ion batteries. J Appl Chem. 2013; 49(65):7234-6. https://doi.org/10.1039/c3cc43194k
Agrawal OD, Kulkarni YA. Mini-review of analytical methods used in quantification of ellagic acid. Rev Anal Chem. 2020; 39:31-44. https://doi.org/10.1515/revac-2020-0113
Dalavi NB, Gawali VB, Bhalsing MD. Comparative HPTLC estimation and antibacterial effect of ellagic acid, gallic acid and ethanolic extract of Syzygium cumini seeds under accelerated storage condition. Int J Pharmacogn Phytochem Res. 2017; 9(7):965-9. https://doi.org/10.25258/phyto.v9i07.11164
Bagul M, Srinivasa H, Padh H, Rajani M. A rapid densitometric method for simultaneous quantification of gallic acid and ellagic acid in herbal raw materials using HPTLC. J Sep Sci. 2005; 28(6):581-4. https://doi.org/10.1002/jssc.200301695.
Syed Y, Khan M. Chromatographic profiling of ellagic acid in Woodfordia fruticosa flowers and their gastroprotective potential in ethanol-induced ulcers in rats. Pharmacogn Res. 2016; 8(5S):5-11. https://doi.org/10.4103/0974-8490.178649
Bazylko A, Tomczyk M, Flazińska A, Lęgas A. Chemical fingerprint of potentilla species by using HPTLC Method. J Planar Chromatogr Mod TLC. 2011; 24(5):441-4. https://doi.org/10.1556/JPC.24.2011.5.14
Riffault L, Destandau E, Pasquier L, André P, Elfakir C. Phytochemical analysis of Rosa hybrida Cv. "Jardin de Granville" by HPTLC, HPLC-DAD and HPLC-ESI-HRMS: Polyphenolic fingerprints of six plant organs. Phytochem. 2014; 99:127-34. https://doi.org/10.1016/j.phytochem.2013.12.015
Arapitsas P. Hydrolyzable tannin analysis in food. Food Chem. 2012; 135(3):1708-17. https://doi.org/10.1016/j.foodchem.2012.05.096
Dhanani T, Shah S, Kumar S. A validated high-performance liquid chromatography method for determination of tannin related marker constituents gallic acid, corilagin, chebulagic acid, ellagic acid and chebulinic acid in four terminalia species from India. J Chromatogr Sci. 2015; 53(4):625-32. https://doi.org/10.1093/chromsci/bmu096
Kadam PV, Yadav KN, Bhingare CL, Patil MJ. Development and validation of a HPLC analytical method for determination of ellagic acid in Epilobium angustifolium extract. Int J Pharm Sci Res. 2019; 10(3):1300-6. https://doi.org/10.13040/IJPSR.0975-8232.10(3).1300-06
Assunção PID, Conceição EC, Borges LL, de Paula JAM. Development and validation of a HPLC-UV method for the evaluation of ellagic acid in liquid extracts of Eugenia uniflora L. (Myrtaceae) leaves and its ultrasound-assisted extraction optimization. Evid Based Complementary Altern Med. 2017. p. 1-9. https://doi.org/10.1155/2017/1501038
Owczarek A, Gudej J. Investigation into biologically active constituents of Geum rivale L. Acta Pol Pharm. 2013; 70(1):111-4.
Aguilera-Carbo A, Augur C, Prado-Barragan L, Aguilar C, Favela-Torres E. Extraction and analysis of ellagic acid from novel complex sources. Chem Pap. 2008; 62(4):440-4. https://doi.org/10.2478/s11696-008-0042-y
Chernonosov AA, Karpova EA, Lyakh EM. Identification of phenolic compounds in Myricaria bracteata leaves by high-performance liquid chromatography with a diode array detector and liquid chromatography with tandem mass spectrometry. Rev Bras Farmacogn. 2017; 27(5):576-9. https://doi.org/10.1016/j.bjp.2017.07.001
Aybastıer Ö, Dawbaa S, Demir C. Investigation of antioxidant ability of grape seeds extract to prevent oxidatively induced DNA damage by gas chromatography-tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2018; 1072:328-35. https://doi.org/10.1016/j.jchromb.2017.11.044
Giri L, Andola HC, Purohit VK, Rawat MS, Rawal RS, Bhatt ID. Chromatographic and spectral fingerprinting standardization of traditional medicines: An overview as modern tools. Res J Phytochem. 2010; 4(4):234-41.
Stalikas CD. Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci. 2007; 30(18):3268-95. https://doi.org/10.1002/jssc.200700261
Owczarek A, Gudej J. Investigation into biologically active constituents of Geum rivale L. Acta Pol Pharm. 2013; 70(1):111-4.
Zoechling A, Liebner F, Jungbauer A. Red wine: A source of potent ligands for peroxisome proliferator-activated receptor γ. Food Funct. 2011; 2(1):28-38. https://doi.org/10.1039/C0FO00086H
Ghadage DM, Kshirsagar PR, Pai SR, Chavan JJ. Extraction efficiency, phytochemical profiles and antioxidative properties of different parts of Saptarangi (Salacia chinensis L.) – An important underutilized plant. Biochem Biophys Rep. 2017; 12:79-90. https://doi.org/10.1016/j.bbrep.2017.08.012
Hadrich F, Cher S, Gargouri YT, Adel S. Antioxidant and lipase inhibitory activities and essential oil composition of pomegranate peel extracts. J Oleo Sci. 2014; 63(5):515-25. https://doi.org/10.5650/jos.ess13163
Zehl M, Braunberger C, Conrad J, Crnogorac M, Krasteva S, Vogler B, et al. Identification and quantification of flavonoids and ellagic acid derivatives in therapeutically important Drosera species by LC-DAD, LC-NMR, NMR, and LC-MS. Anal Bioanal Chem. 2011; 400(8):2565-76. https://doi.org/10.1007/s00216-011-4690-3
Kumar S, Singh A, Kumar B. Identification and characterization of phenolics and terpenoids from ethanolic extracts of Phyllanthus species by HPLC-ESI-QTOF-MS/MS. J Pharm Anal. 2017; 7(4):214-22. https://doi.org/10.1016/j.jpha.2017.01.005
Lee JH, Johnson JV, Talcott ST. Identification of Ellagic acid Conjugates and other polyphenolics in muscadine grapes by HPLC-ESI-MS. J Agric Food Chem. 2005; 53(15):6003-10. https://doi.org/10.1021/jf050468r
Costa EV, Lima DL, Evtyugin DV, Esteves VI. Development and application of a capillary electrophoresis method for the determination of ellagic acid in E. globulus wood and in filtrates from E. globulus kraft pulp. Wood Sci Technol. 2014; 48(1):99-108. https://doi.org/10.1007/s00226-013-0584-1
Zhou B, Wu Z, Li X, Zhang J, Hu X. Analysis of ellagic acid in pomegranate rinds by capillary electrophoresis and high-performance liquid chromatography. Phytochem Anal. 2008; 19(1):86-9. https://doi.org/10.1002/pca.1054