Sonneratia apetala: Its Ecology, Bioactive Compounds and Biological Activities Including its Nano-formulations
DOI:
https://doi.org/10.18311/jnr/2023/34073Keywords:
Biological Activity, Nano Formulations, Natural Compound, Phytoconstituents, Sonneratia apetalaAbstract
Plants have been the primary source of medications and are essential to maintaining human health. Despite significant advancements in the field of synthetic medications and antibiotics, plants continue to be essential in both traditional and modern medicine all over the world. It significantly increases soil fertility and has a variety of characteristics that make it an ideal founder restoration species. There has not been any evidence of an Sonneratia apetala natural invasion in the northern mangrove region yet. This tree is an evergreen species that is known for its rapid growth and natural occurrence. The main phyto-constituents present in Sonneratia apetala are betulinic acid, lupeone, lupeol, stigmast-5-ene 3beta, β-amyrin hexadecaneate, 5β-cholestane-3α,7α-diol, and physcoion. Some chemical constituents present in Sonneratia apetala are gibberellin, quercetin, caffeic acid, (-) catechin, and epicatechin. The fruits and bark have antioxidant, antidiabetic activity, antibacterial, hepatoprotective effect and astringent activity, anticancer activity, hypouricemic activity, and gastroprotective effects. The constituents of bark and leaf include flavonoids, alkaloids, tannins, glycosides (anthraquinone and cardiac), terpenoids, saponins, steroids, protein and amino acids, steroid and gums, carbohydrates, vitamins (thiamine, riboflavin) and certain minerals. This review also reported its ecological-, salt regulatory- and reproductive- features as well.
Downloads
Metrics
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Sankhadip Bose, Sujayita Mazumder, Somsubhra Ghosh, Sabyasachi Banerjee, Swarnali Roy, Nardev Singh (Author)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-08-16
Published 2023-11-10
References
Hossain SJ, Iftekharuzzaman M, Haque MA, Saha B, Moniruzzaman M, Rahman MM, Hossain H. Nutrient compositions, antioxidant activity and common phenolics of Sonneratia apetala (Buch.-Ham.) fruit. Int J Food Prop. 2016b; 19(5):1080–92. https://doi.org/10.1080/10942912.2015.1055361 DOI: https://doi.org/10.1080/10942912.2015.1055361
Hossain SJ, Islam MR, Pervin T, Iftekharuzzaman M, Hamdi OAA, Mubassara S, Saifuzzaman M, Shilpi JA. Antibacterial, anti-diarrhoeal, analgesic, cytotoxic activities, and GC-MS profiling of Sonneratia apetala (Buch.-Ham.) seed. Prev Nutr Food Sci. 2017; 22:157–65.
Islam MT. Natural Products in green detection of cancer cells, cancer therapy, and monitoring of therapeutic and cancer progression: a perspective. Int J Med. 2017a; 5:62–65. https://doi.org/10.14419/ijm.v5i1.7280 DOI: https://doi.org/10.14419/ijm.v5i1.7280
Islam MT. Oxidative stress and mitochondrial dysfunction are linked to neurodegenerative disorders. Neurol Res. 2017b; 39:73–82. https://doi.org/10.1080/01616412.2016.1251711 PMid:27809706 DOI: https://doi.org/10.1080/01616412.2016.1251711
Jaimini D, Sarkar C, Shabnam AA, Jadhav BL. Evaluation of antibacterial properties of mangrove plant Sonneratia apetala Buch. Ham Leaf World Appl Sci J. 2017a; 14:1683–6.
Ji QF, Lin WH, Li J, Li W, Kazuo K, Tamotsu N, Fu HZ. Chemical investigation of Chinese mangrove Sonneratia apetala II. Zhongguo Zhong Yao Za Zhi. 2005; 30:1258–60.
Keane KN, Cruzat VF, Carlessi R, de Bittencourt PI, Jr Newsholme P. Molecular events linking oxidative stress and inflammation to insulin resistance and β-cell dysfunction. OMCL. 2015; 181643. https://doi.org/10.1155/2015/181643 PMid:26257839 PMCid:PMC4516838 DOI: https://doi.org/10.1155/2015/181643
Kehrer JP, Klotz LO. Free radicals and related reactive species as mediators of tissue injury and disease: health implications. CRIT. 2015; 45:765–98. https://doi.org/10.3109/10408444.2015.1074159 PMid:26610815 DOI: https://doi.org/10.3109/10408444.2015.1074159
Khan MH, Parvez S. Hesperidin ameliorates heavy metal-induced toxicity mediated by oxidative stress in the brain of Wistar rats. J Trace Elem Med Biol. 2015; 31:53–60. https://doi.org/10.1016/j.jtemb.2015.03.002 PMid:26004892 DOI: https://doi.org/10.1016/j.jtemb.2015.03.002
Kovacik J, Dresler S, Peterkova V, Babula P. Metal-induced oxidative stress in terrestrial macrolichens. Chemosphere. 2018; 203:402–9. https://doi.org/10.1016/j.chemosphere.2018.03.112 PMid:29627607 DOI: https://doi.org/10.1016/j.chemosphere.2018.03.112
Linh TM, Giang VH, Lien LQ, Van NT, Ban NK, Minh CV. Antibacterial activity of some mangrove species in Xuan Thuy National Park, Nam Dinh. Vietnam tap Chi Sinh hoc. 2013; 35:342–7. https://doi.org/10.15625/0866-7160/v35n3.3387 DOI: https://doi.org/10.15625/0866-7160/v35n3.3387
Liu J, Luo D, Wu Y, Gao C, Lin G, Chen J, Wu X, Zhang Q, Cai J, Su Z. The protective effect of Sonneratia apetala fruit extract on acetaminophen-induced liver injury in mice. ECAM. 2019; 6919834. https://doi.org/10.1155/2019/6919834 PMid:31320915 PMCid:PMC6607706 DOI: https://doi.org/10.1155/2019/6919834
Lorke D. A new approach to practical acute toxicity. Arch Toxicol. 1983; 53:275–89. https://doi.org/10.1007/BF01234480 PMid:6667118 DOI: https://doi.org/10.1007/BF01234480
Mai NS, Tan DV. Fractionation of phenolic compounds from Sonneratia apetala pneumatophores and their bioactivities. Tap Chi Sinh Hoc. 2017; 39:451–6. https://doi.org/10.15625/0866-7160/v39n4.10708 DOI: https://doi.org/10.15625/0866-7160/v39n4.10708
Mclaughlin JL, Rogers LL, Anderson JE. The use of biological assays to evaluate botanicals. Drug Inf J. 1998; 32:513–24. https://doi.org/10.1177/009286159803200223 DOI: https://doi.org/10.1177/009286159803200223
Meyer BN, Ferringni NR, Puam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: a convenient general bioassay for active constituents. Planta Med. 1982; 45:31–4. https://doi.org/10.1055/s-2007-971236 DOI: https://doi.org/10.1055/s-2007-971236
Mukul MEH, Hossain MS, Ahamed SK, Debnath P, Akter M. Antioxidant and membrane stabilizing activities of the bark of Sonneratia apetala. Bangladesh Pharm J. 2016; 19:147–51. https://doi.org/10.3329/bpj.v19i2.29272 DOI: https://doi.org/10.3329/bpj.v19i2.29272
Nagababu P, Rao VU. Pharmacological Assessment, green synthesis, and characterization of silver nanoparticles of Sonneratia apetala Buch.-Ham Leaves. J Appl Pharm Sci. 2017; 7:175–82.
Nunes BS, Carvalho FD, Guilhermino LM, Van Stappen G. Use of the genus Artemia in ecotoxicity testing. Environ Pollut. 2006; 144:453–62. https://doi.org/10.1016/j.envpol.2005.12.037 PMid:16677747 DOI: https://doi.org/10.1016/j.envpol.2005.12.037
Ochoa M, Lallès JP, Malbert CH, Val-Laillet D. Dietary sugars: their detection by the gut-brain axis and their peripheral and central effects in health and diseases. Eur J Nutr. 2015; 54:1–24. https://doi.org/10.1007/s00394-014-0776-y PMid:25296886 PMCid:PMC4303703 DOI: https://doi.org/10.1007/s00394-014-0776-y
Barros L, Ferreira MJ, Queiros B, Ferreira IC, Baptista P. Total phenol, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushroom and their antioxidant activities. Food Chem. 2007; 103:413-9. https://doi.org/10.1016/j.foodchem.2006.07.038
Islam MT, Melo-Cavalcante AAC, Peron AP, Sousa JMC. Evaluation of cytotoxic and mutagenic effects of two artificial sweeteners using eukaryotic test systems. Afr J Biotechnol. 2017; 16:547–51. https://doi.org/10.5897/AJB2016.15695 DOI: https://doi.org/10.5897/AJB2016.15695
Onasanwo SA, Elegbe RA. Antinociceptive and anti-inflammatory properties of the leaf extract of Hedranthera barteri in Rats and Mice. Afr J Biomed Res. 2006; 2:109–18.
Panda SK, Pati D, Mishra SK, Sahu S, Tripathy B, Nayak L. Phytochemical investigation and antimicrobial activity of methanolic extract of Sonneratia apetala Buch-Ham. Areal parts. Int J Pharm Biol Arch. 2017; 3:79–83.
Patil UK, Saraf S, Dixit VK. Hypolipidemic activity of seeds of Cassia tora Linn. J Ethnopharmacol. 2004; 90:249–52. https://doi.org/10.1016/j.jep.2003.10.007 PMid:15013188 DOI: https://doi.org/10.1016/j.jep.2003.10.007
Patra JK, Das SK, Thatoi H. Phytochemical profiling and bioactivity of a mangrove plant, Sonneratia apetala, from Odisha Coast of India. Chin J Integr Med. 2015; 21(4):274–85. https://doi.org/10.1007/s11655-014-1854-y PMid:25253550 DOI: https://doi.org/10.1007/s11655-014-1854-y
Rahmatullah M, Sadeak SMI, Bachar SC, Hossain MT, Abdullah-alMamun M, Jahan N, Chowdhury MH, Jahan R, Nasrin D, Rahman M, Rahman S. Brine shrimp toxicity study of different Bangladeshi medicinal plants. Adv Nat Appl Sci. 2010; 4:163–73.
Raquibul SM, Hossain MM, Aktar R, Jamila M, Mazumder MEH, Alam MA et al. Analgesic activity of the different fractions of the aerial parts of Commenila benghalensis Linn. Int J Pharmacol. 2010; 6:63–7. https://doi.org/10.3923/ijp.2010.63.67 DOI: https://doi.org/10.3923/ijp.2010.63.67
Ripon SS, Mahmood A, Chowdhury MM, Islam MT. A possible anti-atherothrombosis activity via the cytoprotective trait of the Clerodenrum viscosum leaf methanol extract. Insights Biomed. 2016; 1:1–6.
Sangian H, Faramarzi H, Yazdinezhad A, Mousavi SJ, Zamani Z, Noubarani M et al. Antiplasmodial activity of ethanolic extracts of some selected medicinal plants from the northwest of Iran. Parasitol Res. 2013; 112:3697–701. https://doi.org/10.1007/s00436-013-3555-4 PMid:23922204 DOI: https://doi.org/10.1007/s00436-013-3555-4
Singh P, Khosa RL, Mishra G, Jha KK. Antidiabetic activity of ethanolic extract of Cyperus rotundus rhizomes in streptozotocin-induced diabetic mice. J Pharm Bioallied Sci. 2015; 7:289–92. https://doi.org/10.4103/0975-7406.168028 PMid:26681885 PMCid:PMC4678986 DOI: https://doi.org/10.4103/0975-7406.168028
Thatoi P, Kerry RG, Gouda S, Das G, Pramanik K, Thatoi H, Patra JK. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. Photochem Photobiol. 2016; 163:311–8. https://doi.org/10.1016/j.jphotobiol.2016.07.029 PMid:27611454 DOI: https://doi.org/10.1016/j.jphotobiol.2016.07.029
Tiboni GM, Ponzano A. Nitric oxide and teratogenesis: an update. Curr Pharm Des. 2014; 20:5443–7. https://doi.org/1 0.2174/1381612820666140205150437 PMid:24502594 DOI: https://doi.org/10.2174/1381612820666140205150437
Upadhyay HC. Medicinal chemistry of alternative therapeutics: novelty and hopes with genus ammonia. Curr Top Med Chem. 2019; 19(10):784–94. https://doi.org/10.2174/1568026619666190412101047 PMid:30977452 DOI: https://doi.org/10.2174/1568026619666190412101047
Uritu CM, Mihai CT, Stanciu GD, Dodi G, Alexa-Stratulat T, Luca A, Leon-Constantin MM, Stefanescu R, Bild V, Melnic S, Tamba BI. Medicinal plants of the family Lamiaceae in pain therapy: a review. Pain Res Manag. 2018:7801543. https://doi.org/10.1155/2018/7801543 PMid: 29854039 PMCid:PMC5964621 DOI: https://doi.org/10.1155/2018/7801543
Viswanathan VK, Hodges K, Hecht G. Enteric infection meets intestinal function: how bacterial pathogens cause diarrhoea. Nat Rev Microbiol. 2009; 7:110–9. https://doi.org/10.1038/nrmicro2053 PMid:19116615 PMCid:PMC3326399 DOI: https://doi.org/10.1038/nrmicro2053
Weidmann P, Boehlen LM, de Courten M. Pathogenesis, and treatment of hypertension associated with diabetes mellitus. Am Heart J. 1993; 125:1498–513. https://doi.org/10.1016/0002-8703(93)90447-H PMid:8480621 DOI: https://doi.org/10.1016/0002-8703(93)90447-H
Wieczorek K, Osek J. Antimicrobial resistance mechanisms among Campylobacter. Biomed Res Int. 2013; 340605. https://doi.org/10.1155/2013/340605 PMid:23865047 PMCid: PMC3707206 DOI: https://doi.org/10.1155/2013/340605
Wong JH, Sze SCW, Ng TB, Cheung RCF, Tam C, Zhang KY, Dan X, Chan YS, Shing Cho WC, Ng CCW, Waye MMY, Liang W, Zhang J, Yang J, Ye X, Lin J, Ye X, Wang H, Liu F, Chan DW, Ngan HYS, Sha O, Li G, Tse R, Tse TF, Chan H. Apoptosis and anti-cancer drug discovery: the power of medicinal fungi and plants. Curr Med Chem. 2018; 25(40):5613–30. https://doi.org/10.2174/0929867324666170720165005 PMid:28730971 DOI: https://doi.org/10.2174/0929867324666170720165005
Wu NQ, Guo YL, Xu RX, Liu J, Zhu CG, Jiang LX, Li JJ. Acute myocardial infarction in an 8-year-old male child with homozygous familial hypercholesterolemia: laboratory findings and response to lipid-lowering drugs. Clin Lab. 2013; 59:901–7. https://doi.org/10.7754/Clin.Lab.2012.121104 DOI: https://doi.org/10.7754/Clin.Lab.2012.121104
Yin J, Wang AP, Li WF, Shi R, Jin HT, Wei JF. Time-response characteristic and potential biomarker identification of heavy metal-induced toxicity in zebrafish. Fish Shellfish Immunol. 2018; 72:309–17. https://doi.org/10.1016/j.fsi.2017.10.047 PMid:29111395 DOI: https://doi.org/10.1016/j.fsi.2017.10.047
Kathiresan K, Boopathy NS, Kavitha S. Coastal vegetation: An underexplored source of anticancer drugs. Nat Prod Rad. 2006; 5:114-9.
Khajure PV, Rathod JL. Potential anticancer activity of Acanthus ilicifolius extracted from the mangrove forest of Karwar, west coast of India. World J Sci Technol. 2011; 1:1-6.
Milon Md A, Muhit Md A, Goswami D, Masud MM, Begum B. Antioxidant, cytotoxic and antimicrobial activity of Sonneratia alba bark. Int J Pharm Sci Res. 2012; 3:2233-7.
Patra JK, Panigrahi TK, Rath SK, Dhal NK, Thatoi HN. Phytochemical screening and antimicrobial assessment of leaf extracts of Excoecaria agallocha L.: A mangal species of Bhitarkanika, Orissa, India. Adv Nat Appl Sci. 2009; 3:241-6.
Raouf NA, Ibraheem BM. Antibiotic activity of two Anabaena sp. against fish pathogens. Afr J Biotechnol. 2008; 7:2244-8.
Adeloye O, David AA, Obafemi AC. Studies on antimicrobial, antioxidant, and phytochemical analysis of Urena lobata L. J Phy Nat Sci. 2007; 1:1-8.
Adam-Perrot A, Clifton P, Brouns F. Low-carbohydrate diets: nutritional and physiological aspects. Obes Rev. 2006; 7:49–58. https://doi.org/10.1111/j.1467-789X.2006.00222.x PMid:16436102 DOI: https://doi.org/10.1111/j.1467-789X.2006.00222.x
Ahmed A, Ohlson M, Hoque S, Moula MG. Chemical composition of leaves of a mangrove tree (Sonneratia apetala Buch.-Ham.) and their correlation with some soil variables. Bangladesh J Bot. 2010; 39:61–9. https://doi.org/10.3329/bjb.v39i1.5528 DOI: https://doi.org/10.3329/bjb.v39i1.5528
Bandaranayake W. Survey of mangrove plants from Northern Australia for phytochemical constituents and UV-absorbing compounds. Curr Top Phytochem. 1951; 4:69–78.
Bandaranayake WM. Traditional and medicinal uses of mangroves. Mangroves Salt Marshes. 1998; 2:133–48. https://doi.org/10.1023/A:1009988607044 DOI: https://doi.org/10.1023/A:1009988607044
Bandaranayake WM. Bioactivities, bioactive compounds, and chemical constituents of mangrove plants. Wet l Ecol Manag. 2002; 10:421–52. https://doi.org/10.1023/A:1021397624349 DOI: https://doi.org/10.1023/A:1021397624349
Brunke S, Hube B. Adaptive prediction as a strategy in microbial infections. PLoS Pathog. 2014; 10: e1004356. https://doi.org/10.1371/journal.ppat.1004356 PMid:25275642 PMCid:PMC4183746 DOI: https://doi.org/10.1371/journal.ppat.1004356
Calixto JB. The role of natural products in modern drug discovery. Ann Braz Acad Sci. 2019; 91(3): e20190105. https://doi.org/10.1590/0001-3765201920190105 PMid:31166478 DOI: https://doi.org/10.1590/0001-3765201920190105
Capasso F, Mascolo N, Izzo AA, Gaginella TS. Dissociation of castor oil-induced diarrhoea and intestinal mucosal injury in the rat: effect of NG-nitro-L-arginine methyl ester. Br J Pharmacol. 1994; 113:1127–30. https://doi.org/10.1111/j.1476-5381.1994.tb17113.x PMid:7889264 PMCid:PMC1510485 DOI: https://doi.org/10.1111/j.1476-5381.1994.tb17113.x
Chiejina SN, Behnke JM, Fakae BB. Haemoncho tolerance in West African Dwarf goats: contribution to sustainable, anthelmintics-free helminth control in traditionally managed Nigerian dwarf goats. Parasite. 2015; 22:7. https://doi.org/10.1051/parasite/2015006 PMid:25744655 PMCid:PMC4321401 DOI: https://doi.org/10.1051/parasite/2015006
Di Lorenzo C, Dell Agli M, Badea M, Dima L, Colombo E, Sangiovanni E, Restani P, Bosisio E. Plant food supplements with anti-inflammatory properties: a systematic review (II). Crit Rev Food Sci Nutr. 2013; 53:507–16. https://doi.org/10.1080/10408398.2012.691916 PMid:23391017 DOI: https://doi.org/10.1080/10408398.2012.691916
Ganguly SN, Sanyal T, Sircar PK, Sircar SM. A new gibberellin (A25) in the leaves of Sonneratia apetala ham. Chem Ind. 1970; 25:832–83.
Gutowski M, Kowalczyk S. A study of free radical chemistry: their role and pathophysiological significance. Acta Biochim Pol. 2013; 60:1–16. https://doi.org/10.18388/abp.2013_1944 PMid:23513192 DOI: https://doi.org/10.18388/abp.2013_1944
Dewanjee S, Kundu M, Maiti A, Majumdar R, Majumdar A, Mandal SC. In vitro evaluation of antimicrobial activity of crude extract from plants Diospyros peregrina, Coccinia grandis and Swietenia macrophylla. Trop J Pharmacol Res. 2007; 6:773-8. https://doi.org/10.4314/tjpr.v6i3.14658 DOI: https://doi.org/10.4314/tjpr.v6i3.14658
Kuete V, Efferth T. Cameroonian medicinal plants: pharmacology and derived natural products. Frontiers Pharmacol. 2010; 1:123. https://doi.org/10.3389/fphar.2010.00123 PMid:21833168 PMCid:PMC3153003 DOI: https://doi.org/10.3389/fphar.2010.00123
Slinkard K, Singleton VL. Total phenol analysis: automation and comparison with manual methods. Am J Enology Viticult. 1977; 28:49-55. https://doi.org/10.5344/ajev.1977.28.1.49 DOI: https://doi.org/10.5344/ajev.1974.28.1.49
Barros L, Ferreira MJ, Queiros B, Ferreira IC, Baptista P. Total phenol, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushroom and their antioxidant activities. Food Chem. 2007; 103:413-9. https://doi.org/10.1016/j.foodchem.2006.07.038 DOI: https://doi.org/10.1016/j.foodchem.2006.07.038
Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phodphomolybdenum complex: specific application to the determination of Vitamin E. Anal Biochem. 1999; 269:337-41. https://doi.org/10.1006/abio.1999.4019 PMid:10222007 DOI: https://doi.org/10.1006/abio.1999.4019
Zhao H, Dong J, Lu J, Chen J, Li Y, Shan L, et al. Effect of extraction solvent mixtures on antioxidant activity evaluation and their extraction capacity and selectivity for free phenolic compounds in Barely (Hordeum vulgare L.). J Agri Food Chem. 2006; 54:7277-86. https://doi.org/10.1021/jf061087w PMid:16968094 DOI: https://doi.org/10.1021/jf061087w
Kiran G, Rajyalakshmi G, Baburao B, Venkateshwar RJ, Sarangapani M. Free radical scavenging activity of some isatin-5-sulphonamide derivatives. Pharmacol Online. 2009; 1:540-5.