Exploring the impact of cyclic lipopeptides from Bacillus subtilis NBAIR-BSWG1 through in vitro and in planta, studies against Sclerotium rolfsii
DOI:
https://doi.org/10.18311/jbc/2023/35546Keywords:
Biocontrol, lipopeptides, Sclerotium rolfsiiAbstract
Bacillus subtilis is a Gram-positive bacterium known for its antagonistic attributes, particularly through the production of various secondary metabolites, including lipopeptides. In this study, we investigated the antagonistic capabilities of B. subtilis strain NBAIR-BSWG1 with a focus on assessing the efficacy of NBAIR-BSWG1 in combatting Sclerotium rolfsii. Our findings demonstrated substantial inhibitory effects, with 82.73% to 100% reduction in S. rolfsii growth when exposed to NBAIR-BSWG1 at concentrations ranging from 50 to 100 µL/mL in poison food technique. In dual culture assay, NBAIR-BSWG1 exhibited a significant 55.50% inhibition of S. rolfsii. Moreover, pot experiments revealed a promising 26% reduction in disease incidence. This study underscores the significant role of NBAIR-BSWG1 in controlling S. rolfsii, holding substantial potential for developing effective formulations aimed at mitigating the southern blight of tomatoes.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 K. S. Ankitha, T. K. Radha, S. Ruqiya, Aditya Kukreti, N. Aarthi, S. Nanditha, R. Rangeshwaran, A. Kandan, G. Sivakumar, A. N. Shylesha, H. C. Girisha, K. Nagaraju, T. Venkatesan, S. N. Sushil, C. Manjunatha (Author)
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2023-11-06
Published 2023-09-30
References
Biniarz, P., and Łukaszewicz, M. 2017. Direct quantification of lipopeptide biosurfactants in biological samples via HPLC and UPLC-MS requires sample modification with an organic solvent. Appl Microbiol Biotechnol, 101(11): 4747-4759. https://doi.org/10.1007/s00253-017-8272-y PMid:28432441 PMCid:PMC5442266 DOI: https://doi.org/10.1007/s00253-017-8272-y
Guo, S., Li, X., He, P., Ho, H., Wu, Y., and He, Y., 2015. Whole-genome sequencing of Bacillus subtilis XF-1 reveals mechanisms for biological control and multiple beneficial properties in plants. J Ind Microbiol Biotechnol, 42(6): 925-937. https://doi.org/10.1007/s10295-015-1612-y PMid:25860123 DOI: https://doi.org/10.1007/s10295-015-1612-y
Kator, L., Hosea, Z. Y., and Oche, O. D. 2015. Sclerotium rolfsii: Causative organism of southern blight, stem rot, white mold and sclerotia rot disease. Ann Biol Res, 6(11): 78-89. https://doi.org/10.1016/j.crmicr.2021.100094 PMid:35024641 PMCid:PMC8724949
Kumar, S., Sindhu, S. S. and Kumar, R. 2022. Biofertilizers: An ecofriendly technology for nutrient recycling and environmental sustainability. Curr Res Microb Sci, 3: Article 100094. DOI: https://doi.org/10.1016/j.crmicr.2021.100094
Kumbar, B., Mahmood, R., Narasimhappa, N. S. 2017. Identification and molecular diversity analysis of Bacillus subtilis from soils of western ghats of Karnataka using 16S rRNA bacterial universal primers. Int J Pure Appl Biosci, 5(2): 541-548. https://doi.org/10.18782/2320-7051.2721 DOI: https://doi.org/10.18782/2320-7051.2721
Leelasuphakul, W., Hemmanee, P., and Chuenchitt, S. 2008. Growth inhibitory properties of Bacillus subtilis strains and their metabolites against the green mold pathogen (Penicillium digitatum Sacc.) of citrus fruit. Postharvest Biol Technol, 48(1): 113-121. https://doi.org/10.1016/j.postharvbio.2007.09.024 DOI: https://doi.org/10.1016/j.postharvbio.2007.09.024
Li, L., Ma, J., Li, Y., Wang, Z., Gao, T., and Wang, Q. 2012. Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt. Crop Prot, 35: 29-35. https://doi.org/10.1016/j.cropro.2011.12.004 DOI: https://doi.org/10.1016/j.cropro.2011.12.004
Mardanova, A. M., Hadieva, G. F., Lutfullin, M. T., Khilyas, I. V. E., Minnullina, L. F., Gilyazeva, A. G., Bogomolnaya, L. M., and Sharipova, M. R. 2016. Bacillus subtilis strains with antifungal activity against the phytopathogenic fungi. J Agric Sci, 8(1): 1-20. https://doi.org/10.4236/as.2017.81001 DOI: https://doi.org/10.4236/as.2017.81001
Ramyabharathi, S. A. M., and Raguchander, T. 2014. Jonathan EI. Isolation and characterization of novel Bacillus strain from cut flowers in Tamil Nadu. Pestol, 38: 4. https://doi.org/10.1007/s10658-020-02087-6
Ramyabharathi, S. A., Meena, K. S., Rajendran, L., Raguchander, T., and Jonathan, E. I. 2020. Potential of a rhizobacterium Bacillus subtilis (Bbv 57) on Fusarium oxysporum f. sp. gerberae and Meloidogyne incognita infecting gerbera grown in protected cultivation. Eur J Plant Pathol, 58: 615-632. DOI: https://doi.org/10.1007/s10658-020-02087-6
Ruqiya, S., Girisha, H., Manjunatha, C., Rangeshwaran, R., Kandan, A., Sivakumar, G., Kumar, M. K. P., Pramesh, D., Shivakumara, K., Venu, H., Nanditha, S., Ankitha, K. S., Aditya, K., Aarthi, N., and Sushil, S. N. 2022. Biocontrol potential and molecular characterization of lipopeptides producing Bacillus subtilis against Sclerotinia sclerotiorum. J Biol Control, 32(4): 251-221.
Sultana, F., and Hossain, M. M. 2022. Assessing the potentials of bacterial antagonists for plant growth promotion, nutrient acquisition, and biological control of Southern blight disease in tomato. Plos One, 17(6): Article 0267253. https://doi.org/10.1371/journal.pone.0267253 PMid:35675341 PMCid:PMC9176874 DOI: https://doi.org/10.1371/journal.pone.0267253
Yadav, R., Singh, S., and Singh, A. N. 2022. Biopesticides: Current status and future prospects. Proc Int Acad Ecol Enviromental Sci, 12: 211-233.