2-Inner Product Which Takes Values in a Locally C* - Algebras

Jump To References Section

Authors

  • Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar ,IR
  • Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, P.O. Box 397 ,IR

DOI:

https://doi.org/10.18311/jims/2018/14953

Keywords:

Locally C*-algebras, Hilbert A-module, 2-*-inner product space, 2-seminorm
Topology

Abstract

In this paper we introduce the new concept of 2-inner product map that takes values on locally<i>C*</i>-algebras. Then we prove some results on Schwarz inequality, the polarization identity and related important properties.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2018-01-04

How to Cite

Najmabadi, B. M., & Shateri, T. L. (2018). 2-Inner Product Which Takes Values in a Locally <i>C*</i> - Algebras. The Journal of the Indian Mathematical Society, 85(1-2), 217–225. https://doi.org/10.18311/jims/2018/14953
Received 2017-02-03
Accepted 2017-06-20
Published 2018-01-04

 

References

Y.J. Cho, P.C.S. Lin, S.S. Kim and A. Misiak, Theory of 2-inner product spaces, New York, Nova Science Publishes, Inc., 2001.

C. Diminnie, S. Gahler and A. White, 2-Inner Product Spaces II, Demonstratio Mathematica, X(1), (1977), 169-183.

M. Fragoulopoulou, Algebras with Involution, Elsevier, 2005.

R.W. Freese, S. Gahler, on Semi-2-Normed Spaces, Math. Nachr. 105 (1982).

D. Ilisevic, S. Varosanec, On the Cauchy-Schwarz in equality and its reverse in semi inner product C-modules, Banach, J.Math. Anal. 1(1), (2007), 78-84.

M. Joita, Hilbert modules over locally C-algebras, Editura Universitatii din Bucuresti, 2006.

C. Lance, Hilbert C-Moudules, London Math, Soc. Lecture, Note Series210, Cambridge University Press, Cambridge, 1995.

A. Mallios, Topological algebras: selected Topics, North Holland, Amsterdam, 1986.

A. Misiak, n-Inner Product Space, Math Nacher, 140 (1989), 299-319.

N.C. Philips, Inverse limits of C-algebras, J. Operator Theory, 19 (1988), 159-195.