Some Properties of Schubert Varieties
Abstract
This paper is a continuation of our earlier paper [10]. With notations as in [10] (some of which are recalled in 1 and 2, below), we prove the following
1. THEOREM (6.1, below). The Picard group of a non-trivial Schubert variety Ω in the Grassmawt variety Gd,n is Z and is generated by the class of θΩ (1).
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1974 C. Musili
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
C.C. CHEVALLEY: Sur les decompositions cellulaircs des espaces G/B (unpublished).
A. GROTHENDIECK: Cohomologie locale des faisceaux coherents et thioremes de Lefschetz locaux et globaux (SGA2), North-Holland Publishing Company, Amsterdam (1968).
A. GROTHENDIECK AND J. DIEUDONNE: Elements de Goemetrie Atgebrique, EGA IV, Publ. Math. IHES, Nos. 28 and 32 (1966-67).
M. HOCHSTER: Grassmannians and their Schubert varieties are arithmetically Cohen-Macaulay, J. Algebra, Vol. 25 (1973), pp. 40-57.
M. HOCHSTER AND J.A. EAGON: Cohen-Macaulay rings, invariant theory, and the generic perfection of the determinantal loci, Amer. J. Maths., Vol. XCIII (1971), pp. 1020-58.
G. KEMI»F: Schubert methods with an application to algebraic curves, Stichting mathematisch centrum, Amsterdam (1971).
S L. KLEIMAN AND J. LANDOLFI: Geometry and deformation of special Schubert varieties, Composito Mathematica, Vol. 23 (1971), pp. 407-34.
D. LAKSOV: The arithmetic Cohen-Macaulay character of Schubert schemes, Acta Mathematica, Vol. 129 (1972), pp. 1-9.
M. P. MURTHY: A note on factorial rings. Arch, der Math., Vol. XV (1964), pp. 418-20.
C. MUSILI: Postulation formula for Schubert varieties, J. Indian Math. Soc, Vol. 36 (1972), pp. 143-71.
: Thesis, Bombay, 1973.
P.SAMUEL: Lectures on Unique Factorisation Domains, Tata Inst. Lecture notes, Bombay (1964).
L. SZPIRO: Travaux de Kempf, Kleitnan, Laksov,sur1es dhiseursexceptionnels, Seminaire N. Bourbaki, Exp. 417,24 erne annee, 1971-22.