On Level 3 Ramanujan-Sato Type Series for 1/π
DOI:
https://doi.org/10.18311/jims/2024/36136Keywords:
Dedekind eta function, Modular equations, Theta Functions, Eisenstein series.Abstract
Srinivasa Ramanujan developed seventeen fast convergent series for 1/π. Motivated by Ramanujan’s series for 1/π many mathematicians have developed many theories for deriving new series for 1/π. In this article we obtain new series for 1/π using Eisenstein series of level three.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 K. R. Vasuki, T. Anusha, H. T. Shwetha
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
B. C. Berndt, Ramanujan’s Notebooks, Part II, Springer New York, 1989.
B. C. Berndt, Ramanujan’s Notebooks, Part III, Springer New York, 1991.
H. H. Chan, S. H. Chan, and Z. Liu, Domb’s numbers and Ramanujan-Sato type series for 1/π, Adv. Math, 186 (2004), 396–410.
H. H. Chan, Y. Tanigawa, Y. Yifan, and W. Zudilin, New analogues of clausen’s identities arising from the theory of modular forms, Glasnik Matematicki, 42. (62) (2007), 301-308.
K. R. Vasuki, On certain Ramanujan-Weber type modular equations, J. Indian Math. Soc. (N.S.), 75(1-4) (2009), 173–192.
K. R. Vasuki and K. Shivashankara, A note on explicit evaluations of products and ratios of class invariants, Math. Forum, 13 (1999) , 45–56.
N. D. Baruah, On some of Ramanujan’s Schl¨afli-type “mixed” modular equations., J. Number Theory, 100(2) (2003), 270–294.
R. G. Veeresha, An elementary approach to Ramanujan’s modular equations of degree 7 and its appilications, Doctoral Thesis, University of Mysore, 2015.
S. Cooper , Ramanujan’s Theta Functions, Springer, Cham, 2017.
S. Ramanujan, Modular equations and approximations to π, Quart. J. Math, 45 (1914) ,350–372.
S. Bhargava, K. R. Vasuki, and B. R. S. Kumar, Evaluations of Ramanujan-Weber class invariant gn, J. Indian Math. Soc. (N.S.), 72(1-4) (2005), 115–127.