The Sharp Bounds of the Hankel Determinants For the Class of Convex Functions With Respect to Symmetric Points
DOI:
https://doi.org/10.18311/jims/2024/31402Keywords:
Analytic function, Upper bound, Hankel determinant, Carath´eodory functionAbstract
In this paper, we estimate sharp bounds for certain Hankel determinants, H2,3(f), H3,1(f) and Zalcman functional |a32 − a5| for the class of convex function with respect to symmetric points, hence proving the recent conjecture made by Virendra et al., that affirms the sharp bound for the third Hankel determinant in the classes of convex functions with respect to symmetric points is 4/135.
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Biswajit Rath, K. Sanjay Kumar, D. Vamshee Krishna, G. K. Surya Viswanadh
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-09-13
Published 2024-01-01
References
K. O. Babalola, on H3(1) Hankel Determinant for Some Classes of Univalent Functions, Inequality Theory and Applications, 6 (2010), 1-7.
C. Carath´Eodory, ¨ Uber Den Variabilit¨Atsbereich Der Fourier’Schen Konstanten von Positiven Harmonischen Funktionen, Rend. Circ. Matem. Palermo, 32 (1911), 193-217, https://doi.org/10.1007/BF03014795
R. N. Das and P. Singh, on Subclass of Schlicht Mappings, Indian J. Pure and Appl. Math., 8 (1977), 864-872.
T. Hayami and S. Owa, Generalized Hankel Determinant for Certain Classes, Int. J. Math. Anal., 4(52)(2010), 2573-2585.
A. L. P. Hern, A. Janteng and R. Omar, Hankel Determinant H2(3) for Certain Subclasses Of Univalent Functions, Mathematics and Statistics 8 (5) (2020), 566-569, Doi: 10.13189/ms.2020.080510.
O. P. Juneja, S. Ponnusamy and S. Rajasekaran, Coefficient Bounds for Certain Classes Of Analytic Functions, Ann. Polon. Math., 62(3) (1995), 231–244.
B. Kowalczyk, Adam Lecko and Young Jae Sim, the Sharp Bound for the Hankel Determinant Of the Third Kind for Convex Functions, Bull. Aust. Math. Soc., 97 (3) (2018), 435-445.
O. S. Kwon, A. Lecko , y.j. Sim , the Bound of the Hankel Determinant of the Third Kind for Starlike Functions, Bull. Malays. Math. Sci. Soc., 42 (2) (2019), 767-780.
O. S. Kwon, A. Lecko, Y. J. Sim, on the Fourth Coefficient of Functions in The Carath´Eodory Class, Comput. Methods Funct. Theory, 18 (2018), 307–314.
R. J. Libera and E. J. Zlotkiewicz, Coefficient Bounds for the Inverse of a Function With Derivative in P, Proc. Amer. Math. Soc., 87 (2) (1983), 251-257.
S. Malik and v. Ravichandran, on Functions Starlike With Respect to N-Ply Symmetric, Conjugate, and Symmetric Conjugate Points, Commun. Korean Math. Soc., 37 (4) (2022), 1025–1039, https://doi.org/10.4134/Ckms.C210322.
A. K. Mishra, J. K. Prajapat, S. Maharana, Bounds on Hankel Determinant for Starlike And Convex Functions With Respect to Symmetric Points, Cogent Math., (2016), https://doi.org/10.1080/23311835.2016.1160557.
I. R. Nezhmetdinov, a Sharp Lower Bound in the Distortion Theorem for the Sakaguchi Class, J. Math. Anal. Appl., (2000),129-134, https://doi:10.1006/jmaa.1999.6624.
I. R. Nezhmetdinov and S. Ponnusamy, on the Class of Univalent Functions Starlike With Respect to N-Symmetric Points, Hokkaido Math. J. ,31(1)(2000),61-77.
CH. Pommerenke, Univalent Functions, Gottingen: Vandenhoeck and Ruprecht, 1975.
CH. Pommerenke, on the Coefficients and Hankel Determinants of Univalent Functions, J. Lond. Math. Soc., 41(S-1) (1966), 111–122.
B. Rath, K. S. Kumar, D. v. Krishna, A. Lecko, the Sharp Bound of the Third Hankel Determinant for Starlike Functions of Order 1/2, Complex Anal. Oper. Theory (2022), https://doi.org/10.1007/S11785-022-01241-8.
K. Sakaguchi, on a Certain Univalent Mapping, J. Math. Soc. Japan, 11 (1959), 72-75.
Y. J. Sim and Pawel Zaprawa, Third Hankel Determinants for Two Classes Of Analytic Functions With Real Coefficients, Forum Math., 33 (4) (2021), 973-986, https://doi.org/10.1515/Forum-2021-0014.
Virendra Kumar, Sushil Kumar and v. Ravichandran, Third Hankel Determinant For Certain Classes of Analytic Functions, Mathematical Analysis I: Approximation Theory, (2020), Doi: 10.1007/978-981-15-1153-019.
P. Zaprawa, Third Hankel Determinants for Subclasses of Univalent Functions, Mediterr. J. Math., 14 (1) (2017), 1-10.