Rings of Holomorphic and Meromorphic Functions on Subsets of Riemann Surfaces

Jump To References Section

Authors

  • Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio 45221 ,US

Abstract

Throughout this paper R and S will denote noncompact Riemann surfaces and X and Y will be non-empty subsets of R and S, respectively.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

1976-12-01

How to Cite

Carl, D. M. (1976). Rings of Holomorphic and Meromorphic Functions on Subsets of Riemann Surfaces. The Journal of the Indian Mathematical Society, 40(1-4), 75–85. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/16615

 

References

BERS L. On rings of analtyic functions, Bull. Amer. Math. Soc. 54(1948), 311315.

EDWARDS R.E., Algebras of holomorphic functions, Proc. London Math. Soc. 7(1957), 510-517.

FLORACK H., Regulare und meromorphe Funktionen auf nicth geschlossenen Riemannschen Flachen, Schr. Math. Inst. Univ. Munster 1(1948).

HEINS M., Complex function theory. Pure and Applied Mathematics, vol. 28, Academic Press, New York, 1968.

ISS'SA H., On the meromorphic function field of a Stein variety, Ann. of Math. 83(1966), 34-46.

KRA I., On the ring of holomorphic functions on an open Riemann surface, Trans. Amer. Math. Soc. 132(1968), 231-244.

MINDA CD., Analytic functions on nonopen sets, Math. Mag. 46(1973), 223224.

NAKAI M., On rings of analytic functions on Riemann surfaces, Proc. Japan Acad. 39(1963), 79-84.

ROYDEN H.L., Rings of analytic and meromorphic functions, Trans. Amer. Math. Soc. 83(1956), 269-276.

RUDIN W., An algebraic characterization of conformal equivalence, Bull. Amer. Math. Soc. 61(1955), 543.

SuL.P., Rings of analytic functions on any subset of the complex plane, Pacific J. Math. 42(1972), 535-538.