Rings of Holomorphic and Meromorphic Functions on Subsets of Riemann Surfaces
Abstract
Throughout this paper R and S will denote noncompact Riemann surfaces and X and Y will be non-empty subsets of R and S, respectively.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1976 David Minda Carl
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
BERS L. On rings of analtyic functions, Bull. Amer. Math. Soc. 54(1948), 311315.
EDWARDS R.E., Algebras of holomorphic functions, Proc. London Math. Soc. 7(1957), 510-517.
FLORACK H., Regulare und meromorphe Funktionen auf nicth geschlossenen Riemannschen Flachen, Schr. Math. Inst. Univ. Munster 1(1948).
HEINS M., Complex function theory. Pure and Applied Mathematics, vol. 28, Academic Press, New York, 1968.
ISS'SA H., On the meromorphic function field of a Stein variety, Ann. of Math. 83(1966), 34-46.
KRA I., On the ring of holomorphic functions on an open Riemann surface, Trans. Amer. Math. Soc. 132(1968), 231-244.
MINDA CD., Analytic functions on nonopen sets, Math. Mag. 46(1973), 223224.
NAKAI M., On rings of analytic functions on Riemann surfaces, Proc. Japan Acad. 39(1963), 79-84.
ROYDEN H.L., Rings of analytic and meromorphic functions, Trans. Amer. Math. Soc. 83(1956), 269-276.
RUDIN W., An algebraic characterization of conformal equivalence, Bull. Amer. Math. Soc. 61(1955), 543.
SuL.P., Rings of analytic functions on any subset of the complex plane, Pacific J. Math. 42(1972), 535-538.