Infinite Matrices and almost Convergence
Abstract
LET X AND Y BE two nonempty subsets of the space S of complex sequences. Let A = (ank), {n, k=1, 2, ... ) be an infinite matrix of complex numbers.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1976 Sudarsan Nanda
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
BANACH, S., Theorie des Operations Lineaires, (Warsazwa, 1932).
DURAN, J.P., Infinite matrices and almost convergence, Math. Zeit., 128,(1972), 75-83.
KING, J.P., Almost summable sequences, Proc. Amer. Math. Soc, 17, (1966), 1219-1225.
LORENTZ, G.G., A contribution to the theory of divergent sequences, Acta. Math. 80 (1948), 167-190.
LASCARIDES, C.G. AND I.J. MADDOX, Matrix transformation between some classes of sequences, Proc. Camb. Phil. Soc, 68 (1970), 99-104.
LASCARIDES, C.G., A study of certain sequences spaces of Maddox and a generalisation of a theorem of Iyer, Pacific Journ. Math. 38, (2), (1971), 487-500.
MADDOX, I.J., Spaces of strongly summable sequences, Quart. J. Math., Oxford (2), 18, (1967), 345-355. *
.Continuous and Kothe-Toeplitz duals of certain sequence spaces, Proc. Comb. Phil. Soc, 65 (1969), 431-435.
MADDOX I.J. AND J.W. ROLES, Absolute convexity in certain toplogical linear spaces, Proc. Camb. Phil. Soc, 66 (1969), 541-545.
MADDOX, I.J., Elements of functional analysis, Camb. Univ. Press (1970).
SIMONS, S., The sequence spaces /(/>„) and m(jiv), Proc. Lond. Math. Soc, 3 (15) (1965), 422-436.