Infinite Matrices and almost Convergence

Jump To References Section

Authors

  • Department of Mathematics, Regional Engineering College, Rourkela 769008 (Orissa) ,IN

Abstract

LET X AND Y BE two nonempty subsets of the space S of complex sequences. Let A = (ank), {n, k=1, 2, ... ) be an infinite matrix of complex numbers.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

1976-12-01

How to Cite

Nanda, S. (1976). Infinite Matrices and almost Convergence. The Journal of the Indian Mathematical Society, 40(1-4), 173–184. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/16623

 

References

BANACH, S., Theorie des Operations Lineaires, (Warsazwa, 1932).

DURAN, J.P., Infinite matrices and almost convergence, Math. Zeit., 128,(1972), 75-83.

KING, J.P., Almost summable sequences, Proc. Amer. Math. Soc, 17, (1966), 1219-1225.

LORENTZ, G.G., A contribution to the theory of divergent sequences, Acta. Math. 80 (1948), 167-190.

LASCARIDES, C.G. AND I.J. MADDOX, Matrix transformation between some classes of sequences, Proc. Camb. Phil. Soc, 68 (1970), 99-104.

LASCARIDES, C.G., A study of certain sequences spaces of Maddox and a generalisation of a theorem of Iyer, Pacific Journ. Math. 38, (2), (1971), 487-500.

MADDOX, I.J., Spaces of strongly summable sequences, Quart. J. Math., Oxford (2), 18, (1967), 345-355. *

.Continuous and Kothe-Toeplitz duals of certain sequence spaces, Proc. Comb. Phil. Soc, 65 (1969), 431-435.

MADDOX I.J. AND J.W. ROLES, Absolute convexity in certain toplogical linear spaces, Proc. Camb. Phil. Soc, 66 (1969), 541-545.

MADDOX, I.J., Elements of functional analysis, Camb. Univ. Press (1970).

SIMONS, S., The sequence spaces /(/>„) and m(jiv), Proc. Lond. Math. Soc, 3 (15) (1965), 422-436.