Strong Result for Real Zeros of Random Polynomials

Jump To References Section

Authors

  • Department of Mathematics, G.M. College, Sambalpur 768004, Orissa ,IN
  • College of Basic Sciences and Humanities, Bhubaneswar, Orissa ,IN

Abstract

Several authors have estimated bounds for Nn when the random variables satisfy different distribution laws. Littlewood and Offord [2] made the first attempt in this direction.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

1976-12-01

How to Cite

Samal, G., & Pratihari, D. (1976). Strong Result for Real Zeros of Random Polynomials. The Journal of the Indian Mathematical Society, 40(1-4), 223–234. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/16628

 

References

EVANS, E.A. 'On the number of real roots of arandom algebraic equation', Proc. London Math. Soc. (3) 15(1965), 731-749.

LITTLEWOOD, J.E., and OFFORD, A.C., 'On the number of real roots of arandom algebraic equation II', Proc. Cambridge Philos. Soc. 35(1939), 133-148.

SAMAL, G., 'On the number of real roots of a random algebraic equation'. Proc. Cambridge Philos. Soc, 58(1962), 433-442.

SAMAL, G. and MISHRA, M.N., 'On the lower bound of the number of real roots of a random algebraic equation with infinite variance'. Proc. Arner. Math. Soc. 33 (1972), 523-528.

On the lower bound of the number of real roots of a random algebraic equation with infinite variance II', Proc. Amer. Math. Soc. 36(1972), 557563.

On the lower bound of the number of real roots of a random algebraic equation with infinite variance 111'. Proc. Amer. Math. Soc. 39(1973), 184-189.

Real zeros of a random algebraic polynomial' Quart. J. Math. Oxford (2), 24(1973), 169-175.