Strong Result for Real Zeros of Random Polynomials
Abstract
Several authors have estimated bounds for Nn when the random variables satisfy different distribution laws. Littlewood and Offord [2] made the first attempt in this direction.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1976 G. Samal, D. Pratihari
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
EVANS, E.A. 'On the number of real roots of arandom algebraic equation', Proc. London Math. Soc. (3) 15(1965), 731-749.
LITTLEWOOD, J.E., and OFFORD, A.C., 'On the number of real roots of arandom algebraic equation II', Proc. Cambridge Philos. Soc. 35(1939), 133-148.
SAMAL, G., 'On the number of real roots of a random algebraic equation'. Proc. Cambridge Philos. Soc, 58(1962), 433-442.
SAMAL, G. and MISHRA, M.N., 'On the lower bound of the number of real roots of a random algebraic equation with infinite variance'. Proc. Arner. Math. Soc. 33 (1972), 523-528.
On the lower bound of the number of real roots of a random algebraic equation with infinite variance II', Proc. Amer. Math. Soc. 36(1972), 557563.
On the lower bound of the number of real roots of a random algebraic equation with infinite variance 111'. Proc. Amer. Math. Soc. 39(1973), 184-189.
Real zeros of a random algebraic polynomial' Quart. J. Math. Oxford (2), 24(1973), 169-175.