Harmonic LP Functions and Quasiharmonic Degeneracy
Abstract
The class OHLP of Riemannian manifolds which do not carry harmonic LP functions was introduced and its relations to other harmonic null classes discussed in [42]. In the present paper we take up the problem of relations of OHLP to quasiharmonic null classes OQX of Riemannian manifolds, denned by QX = Φ.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1975 Lung Ock Chung, Leo Sario
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
L.CHUNG, Manifolds carrying bounded quasiharmonic but no bounded harmonic functions, (to appear).
Asymptotic behavior and biharmonic degeneracy, (to appear).
L. CHUNG”L. SARIO, Harmonic and quasiharmonic degeneracy of Riemannian manifolds, Tbhoku Math. J. (to appear).
L. CHUNG”L. SARIO”C. WANG, Riemannian manifolds with bounded Dirichlet finite polyharmonic functions, Ann. Scuola Norm. Sup. Pisa 27 (1973), 1-6.
Quasiharmonic f> functions on Riemannian manifolds, Ann. Scuola Norm. Sup. Pisa (to appear).
D. HADA”L. SARIO”C. WANG, Dirichlet finite biharmonic functions on the Poincare JV-ball, /. Reine Angew. Math. 272(1975), 92-101.
N-manifolds carrying bounded but no Dirichlet finite harmonic functions, Nagoya Math. J. 54 (1974), 1-6.
, Bounded biharmonic functions on the Poincare N-ba,KddaiMath. Sen. Rep. 26 (1975), 327-342.
O. HAUPT, Ober das asymptotische Verhalten der Losungcn gewisser linoarer gewohnlicher Differentialgleichungen, Math. Z. 48 (1913), 289-292.
E. HILLE. Behavior of solutions of linear second order differential equations, Ark. Mat. 2(1952), 25-41.
Y. K. KVVON”L. SARIO”B. WALSH, Behavior of biharmonie functions on Wiener's and Royden's compactifications, Ann. Inst. Fourier (Grenoble) 21 (1971), 217-226.
N. MIRSKY”L. SARIO”C. WANG, Bounded polyharmonic functions and the dimension of the manifold, /. Math. Kyoto Univ. 13 (1973), 529-535.
, Parabolicity and existence of bounded or Dirichlet finite polyharmonic functions, Rend. 1st. Mat. Univ. Trieste 6 (1974), 1-9.
M. NAKAI”L. SARIO, Completeness and functions-theoretic degeneracy of Riemannian spaces, Proc. Nat. Acad. Sci. 57 (1967), 29-31.
Biharmonie classification of Riemannian manifolds, Bull. Amer. Math. Soc. 77 (1971), 432-436.
Quasiharmonic classification of Riemannian manifolds, Proc. Amer. Math. Soc. 31 (1972), 165-169.
Dirichlet finite biharmonie functions with Dirichlet finite Laplacians, Math. Z. 122 (1971), 203-216.
A property of biharmonie functions with Dirichlet finite Laplacians, Math. Scand. 29 (1971), 307-316.
Existence of Dirichlet finite biharmonie functions, Ann. Acad. Sci. Fenn.A.1. 532(1973), 1-33.
, Existence of bounded biharmonie functions, /. Reine Angew. Math. 259(1973), 147-156.
Existence of bounded Dirichlet finite biharmonie functions, Ann. Acad. Sci. Fenn. A. I. 505 (1972), 1-12.
Biharmonie functions on Riemannian manifolds, Continuum Mechanics and Related Problems of Analysis Nauka Moscow, 1972, 329-335.
L. SARIO, Biharmonie and quasiharmonic functions on Riemannian manifolds, Duplicated lecture notes 1968-70, University of California, Los Angeles.
Quasiharmonic degeneracy of Riemannian N-manifolds, Kodai Math. Sem. Rep. 26 (1974), 53-59.
Completeness and existence of bounded biharmonie functions on a Riemannian manifold, Ann. Inst. Fourier (Grenoble) 14 (1974), 311-317.
A criterion for the existence of biharmonie Green's functions Jour Australian Math. Soc. (to appear).
Biharmonie measure, Ann. Acad. Sci. Fenn. 587 (1974), 3-18.
Biharmonie Green's functions and harmonic degeneracy J. Math. Kytoto Univ. 15(1975), 351-362.
L. SARIO”M. NAKAI, Classification Theory of Riemann Surfaces, Springer” Verlag, 1970, 446 pp.
L. SARIO”C. WANG, The class of (p, q)-biharmonic functions, Pacific J. Math. 41 (1972), 799-808.
Counterexamples in the biharmonic classification of Riemannian 2-manifolds, Pacific J. Math. 50 (1974), 159-162.
Generators of the space of bounded biharmonic functions, Math. Z. 127 (1972), 273-280.
Quasiharmonic functions on the Poincare N-ball, Rend. Mat. (4) 6 (1973), 1-14.
Riemannian manifolds of dimension 7V> 4 without bounded biharmonic functions, J. London Math. Soc. (2) 7 (1974), 635-644.
Existence of Dirichlet finite biharmonic functions on the Poincare 3-ball, Pacific J. Math. 48 (1973), 267-274
Negative quasiharmonic functions, Tbhoku Math. J. 26 (1974), 85-93.
Radial quasiharmonic functions, Pacific J. Math. 46 (1973), 515-522.
Parabolicity and existence of bounded biharmonic functions, Comm. Math. Heh. 47 (1972), 341-347.
Positive harmonic functions and biharmonic degeneracy, Bull. Amer. Math. Soc. 79 (1973), 182-187.
Parabolicity and existence of Dirichlet finite biharmonic functions, /. London Math. Soc. (2), 8 (1974), 145-148.
Harmonic and biharmonic degeneracy, Kodai Math. Sem. Rep. 25 (1973), 392-396.
Harmonic L^-functions on Riemannian manifolds, Kodai Math. Sem. Rep. (to appear).
L. SARIO”C. WANG”M. RANGE, Biharmonic projection and decomposition, Ann. Acad. Sci. Fenn. A.I. 494 (1971), 1-14.
C. WANG, Biharmonic Green's functions and quasiharmonic degeneracy, Math. Scand. 35 (1974), 38-42.
Biharmonic Green's functions and biharmonic degeneracy, (to appear).
C. WANG”L. SARIO, Polyhannonic classification of Riemannian manifolds, J. Math. Kyoto Univ. 12(1972), 129-140.