On Tauberian Theorems for Some Standard Methods of Summability
Abstract
On summabilities (Aα) and (Ax). P. A. Jeyarajan has proved ([3], Theorem 4) the Tauberian theorem for generalized Abel summability (Aα) appearing as Theorem 1(Aα) in this note.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1975 C. T. Rajagopal
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
G.H. HARDY. Divergent Series (Oxford, 1949).
A. JAKIMOWSKI AND M.R. PARAMESWARAN. Generalized Tauberian theorems for summability-(-4), Quart. J. Math. Oxford (2) 9(1958), 290-298.
P.A. JEYARAJAN. A Tauberian theorem for the generalized Abel method of summabitity-I, J. Indian Math. Soc. New Ser. 36(1972), 279-289.
W.B. PENNINGTON. On Ingham summability and summability by Lambert series, Proc. Cambridge Philos. Soc. 51 (1955), 65-80.
H.R. PITT. Tauberian Theorems (Tata Institute of Fundamental Research Monographs No. 2, Bombay, 1958).
C.T. RAIAGOPAL. A note on "positive" Tauberian theorems, J. London Math.Soc. 25 (1950), 315-327.
A note on the oscillation of Riesz, Euler and Ingham means, Quart. J. Math. Oxford (2) 7 (1956), 64-75.
On the Riemann-Ceskro summability of series and integrals. Tbhoku Math. J. (2) 9 (1957), 247-263.
Tauberian theorems on oscillation for the (®,X) method, Publ. Ramanujan Inst. 1 (1969), 246-267.
M.S. RANGACHARI AND Y. SITARAMAN. Tauberian theorems for logarithmic summability (Z,), Tbhoku Math. J. (2) (16) (1964), 257-269.