Generalised Riesz Typical Means
Abstract
Definitions, notations and previous results. Let G{t) ≠0 be a continuous, positive, non-increasing function defined for t > 0 (if t < 0, set G{t) = 0), with G'(t)/G(t) non-decreasing and G(t) ∈ L(0, n) for every n > 0. Let λ = {λn} (n ≥ 0) be a strictly increasing unbounded sequence with λ0 ≥ 0 and let s = {sn} be an arbitrary sequence.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1975 Jean Tzimbalario
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
BORWEIN D. On the abscissa of summability of a Dirichlet series. J. London Math. Soc. 30 (1955), 68-71.
BOSANQUET L.S. Some extensions of M. Riesz's mean value theorem. Indian J. Math. 9 (1967), 65-90.
BOSANQUET L.S. Functional equation related to Riesz's mean value theorem. Publication of Ramanujan Institute 1 (1968), 47-69.
BOSANQUET L.S. An inequality for sequence transformations. Mathematika 13 (1966), 26-41.
HARDY G.H. AND RIESZ M. The general theory of Dirichlet's series. Cambridge Tracts No. 18; 1915, 1952.
JAKIMOVSKI A. AND TZIMBALARIO J. Inclusion relations for Riesz typical means. Proc. Cambridge Phil. Soc. 72 (1972), 417-423.
JAKIMOVSKI A. AND TZIMBALARIO J. Inclusion relations for general Riesz typical means. Canad. Math. Bull. 17(1974), 51-61.
JAKIMOVSKI A. AND TZIMBALARIO J. Inclusion relations for absolute Riesz typical means and a conjecture by Maddox. 30(1975) 366-384.
JURKATNV.B. uber Konvergenzfaktoren bei Rieszschen Mitteln. Math. Zeit. 54 (1951), 262-271.
JURKAT W.B. Ober Rieszsche Mitteln mit unstetigem Parameter. Math. Zeit. 55 (1951), 8-12.
MADDOX I.J. Some inclusion theoroms. Proc. Glasgow Math. Ass. 6(1964) 161-168.
MADDOX I.J. Convergence and summability factors for Riesz means. Proc. London Math. Soc. 12 (1962), 345-366.
PEYERIMHOFF A. Konvergenz und Summierbarkeitsfaktoren. Math. Zeit. 55 (1951) 23-54.
RUSSELL D.C. Summability methods which include the Riesz typical means. Proc. Cambridge Phil. Soc. 69 (1971), 99-106 and 297-300.
WILANSKY A. AND ZELLER K. Abschnittsbeschrankte Matrixtransformationen; starke Limitierbarkeit Math. Zeit. 64 (1956), 258-269.
WILANSKY A. Functional Analysis. Blaisdell (1964).
ZELLER K. AND BEEKMANN W. Theorie der Limitierungsverfahrungen. SpringerVerlag, Berlin 1970.