On an Eisenstein Series of Degree 3

Jump To References Section

Authors

  • Tata Institute of Fundamental Research, Homi Bhabha Road,, Bombay 400005 ,IN

Abstract

Let Tn Denote the modular group of degree n, namely the group of 2n-rowed integral square matrices with n-rowed A, B, C, D satisfying the conditions AD' - BC' = En (the n-rowed identity matrix), AB' = BA' and CD'=DC', where, for any matrix P, its transpose is denoted by P'.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

1975-12-01

How to Cite

Raghavan, S. (1975). On an Eisenstein Series of Degree 3. The Journal of the Indian Mathematical Society, 39(1-4), 103–120. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/16639

 

References

H. BRAUN, Konvergenz vcrallgemeinertor Eisenstornscher Reihen, Math. Zeit. 44 (1939), 387-397.

E. HECKE, Analytische Funktionen and algebraische Zahlen, Zweiter Teil, Abh. Math. Seminar Hamburg 3(1924), 213-236; Gesamm. Abhand. 381-404.

J. IGUSA, On Siegel modular forms of genus two, Amer. J. Math. 84(1962), 306-316, Ibid. 86(1964), 392^tl2.

G. KAUFHOLD, Dirichletsche Reihe mit Funktionalgleichung in der Theorie der Modulfunktion 2 Grades, Math. Arm. 137 (1959), 454-476.

M. KOECHER, t)ber Thetareihen indefiniter quadratischer Formen, Math. Nachr. 9(1953), 51-85.

H. MAASS, Modulformen zu indeflniten quadratischen Formen, Math. Scand. 17(1965), 41-55.

Siegel's modular forms and Dirichlet series, Lecture notes in Mathematics, No. 216, Springer-Verlag, 1971.

C. L. SIEGEL, Einfahrung in die Theorie der Modulfunktionen n-ten Grades, Math. Ann. 116 (1939), 617-657: Gesamm, Abhand. II, 97-137.

On the theory of indefinite quadratic forms, Ann. of Math. 45(1944), 577-622; Gesamm Abhand. II, 421-466.

Uber die Fourierschen Koeffizienten der Eisensteinschen Reihen, Mat.-Fys. Medd. Danske Vid. Selsk. No. 6 (1964); Gesamm Abhand. Ill, 443-458.