On the Images of Tori under Degree One Maps
Abstract
By a 'Torus', we mean a finite product of spheres of arbitrary dimensions. A torus usually will be denoted by T, and we fix an orientation [T] of T. Let Mm be a closed oriented topological manifold and suppose that M admits a degree one map f:T→M.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1975 A. R. Shastri
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
ADAMS, J.F. On the nonexistence of elements of Hopf invariant one, Ann. of Math. (2) 72 (1960), 20-104.
BROWDER, W. Surgery on simply connected manifolds, Springer-Verlag, BerlinHeidelberg, New York (1972), Band 65.
HILTON, P.J. and WHITEHEAD, J.H.C. Note on Whitehead product, Ann. of Math. 58 (1953), 429-441.
Hu. S.T. Homotopy Theory, Academic Press, New York and London, 1959.
JAMES, I.M. Note on cup products, Proc. Amer. Math. Soc. 8 (1957), 374-383.
KUROSH, A.G. The Theory of groups, Vol. II, Chelsea Publication Co., New York, 1956.
LEVINE, J. Self-equivalences of Snx Sk, Trans. Amer. Math. Soc. 143 (1969), 523-543.
MILNOR, J.W. 'On simply connected ^-manifolds' Symposium International de Topologia Algebrica, Maxico (1958) 122-128.
. Infinite cyclic coverings, Conference on Topology of Manifolds, Ed: J.G. Hocking, Prindle, Weber and Schmit, Boston, Mass. (1968), 585601.
SIEBENMANN, L, C. On detecting open collars, Trans. Amer. Math. Soc. 142 (1969), 201-225.
SPENCE, L. E. On the images of S^xSt under mappings of degree one. Illinois J. of Math., 17 (1973), 111-114.
WALL, C. T. C. Killing the middle homotopy groups of odd dimensional manifolds, Trans. Amer. Math. Soc. 103 (1962), 421^33.
WHITEHEAD, G. W. Generalization of the Hopf invariant, Ann. of Math. 51 (1950), 192-237.