On Farthest Points
Abstract
Section 2 of this paper deals with the generalizations of a theorem due to Motzkin, Straus and Valentine [7] and a theorem due to V. Klee [4]. Theorem 1 studies the continuity of the farthest point map in a matric space and Theorem 2 establishes that if a compact set in a Frechet space [9] is uniquely remotal with respect to the closure of its convex hull then the set is singleton.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1975 G. C. Ahuja, T. D. Narang, Swaran Trehan
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
CHENEY, Ward; GOLDSTEIN, A. A., Proximity maps for Convex sets Proc. American Math Soc. 10 (.1959), 448-450.
DAY, M.M., Normed Linear Spaces, Academic Press, New York, 1962.
DUNFORD N; SCHWARTZ J.T., Linear Operators, Part I, Interscience Publishers. New York, 1967.
KLEE, V.L., Convexity of Chebyshev Sets, Math. Ann. 142 (1961) 292-204.
LELEK, A; MYCIELSKI, JAN., On Convex Metric Spaces IV, Fundament Mathematicae, 61 (1967), 171-176.
LIN, BOR-LUH, Distance”Sets in Normed Vector Spaces, Nieuw Archief Voor Wiskunde (3), 14 (1966), 23-30.
MOTZKIN, T.S., STRAUS, E.G., AND VALENTINE, F.A., The Number of Farthest Points, Pacific. J. Math. 3 (1953), 221-232.
NICOLESCU, M., Sur la meilleure approximation d'une function donnee par les fonctions d'une famille donnee, Bui. Fac. Sti. Cernauti, 12 (1938) 120-128.
ROBERTSON; A.P., ROBERTSON, W.J., Topological Vector Spaces, Cambridge University Press, 1966.
SINGER, IVAN, Best Approximation in Normed Linear Spaces by Elements of Linear subspaces, Springer-Verlag Berlin-Heidelberg, 1970.
VAUOHAN, H.E., On Locally Compact Metrisable Spaces, Bull. American Math. Soc, 43 (1937) 532-535.