Weak Compactness of Operators on C(S), S Totally Disconnected

Jump To References Section

Authors

  • Department of Mathematics, University of Cincinnati, Cincinnati, Ohio 45221 ,US

Abstract

The scalar field is either real or complex. Throughout this paper S denotes a compact Hausdorff topological space and C(S) the Banach space (under the supremum norm) of all continuous scalar valued functions on S.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

1975-12-01

How to Cite

Bandyopadhyay, U. K. (1975). Weak Compactness of Operators on C(S), S Totally Disconnected. The Journal of the Indian Mathematical Society, 39(1-4), 305–308. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/16656

 

References

T. ANDO, Convergent sequences of finitely additive measures, Pacific J. Math. 11 (1961),395-404.

R. ATAIXA AND J. BUSTOZ, On sequential cores and a theorem of R.R. Phelps, Proc. Amer. Math. Soc. 21 (1969), 36-42.

R.G. BARTI.E, N. DUNFORD AND J. SCHWARTZ, Weak compactness and vector measures, Cattad. J. Math. 7(1955), 289-305.

J.K.BROOKS, On the existence of a control measure for strongly bounded vector measures, Bull. Amer. Math. Soc. 77(1971), 999-1001.

N. DINCULEANU, Vector measures, Pergamon, New York, (1967).

N. DUNFORD AND J.T. SCHWARTZ, Linear operators, Part I, Interscience, New York, (1958).

A. GROTHENDIECK, Sur tes appficati'ons fi'neaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5(1953), 129-173.

P.R. HALMOS, Measure theory, Van Nostrand, Princeton, N.J., (1950).

G.L. SEEVER, Measures on F-spaces, Trans. Amer. Math. Soc. 133 (1968), 267-280.