Weak Compactness of Operators on C(S), S Totally Disconnected
Abstract
The scalar field is either real or complex. Throughout this paper S denotes a compact Hausdorff topological space and C(S) the Banach space (under the supremum norm) of all continuous scalar valued functions on S.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1975 U. K. Bandyopadhyay
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
T. ANDO, Convergent sequences of finitely additive measures, Pacific J. Math. 11 (1961),395-404.
R. ATAIXA AND J. BUSTOZ, On sequential cores and a theorem of R.R. Phelps, Proc. Amer. Math. Soc. 21 (1969), 36-42.
R.G. BARTI.E, N. DUNFORD AND J. SCHWARTZ, Weak compactness and vector measures, Cattad. J. Math. 7(1955), 289-305.
J.K.BROOKS, On the existence of a control measure for strongly bounded vector measures, Bull. Amer. Math. Soc. 77(1971), 999-1001.
N. DINCULEANU, Vector measures, Pergamon, New York, (1967).
N. DUNFORD AND J.T. SCHWARTZ, Linear operators, Part I, Interscience, New York, (1958).
A. GROTHENDIECK, Sur tes appficati'ons fi'neaires faiblement compactes d'espaces du type C(K), Canad. J. Math. 5(1953), 129-173.
P.R. HALMOS, Measure theory, Van Nostrand, Princeton, N.J., (1950).
G.L. SEEVER, Measures on F-spaces, Trans. Amer. Math. Soc. 133 (1968), 267-280.