A Note on the Order of Meromorphic Functions
Abstract
If f(z) is a meromorphic function of order Ï(f) (0 ≤ Ï(f) < ∞) and lower order λ(f), then
Ï(f) = Max {λ(f), Ï1(0),Ï1(∞)}
where Ï1(0) and Ï1(∞) are the exponents of convergence of the zeros and poles respectively, of f{z).
Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1975 S. K. Singh, G. P. Barker
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
B. JA. LEVIN, Distribution of Zeros of Entire Functions. Amer. Math. Soc. Providence, R.I. 1966.
J.M. WHITTAKER, Entire functions of irregular growth take every value, Bull. London Math. Soc. 4(1972), 130-132.