A Note on an Inequality of Schur

Jump To References Section

Authors

  • 33, Temple Road, London, W5 4 SL, England ,GB

Abstract

Let K be a measurable function on (0, ∞) x (0, ∞) such that

(i) K is homogeneous of degree - 1, i.e. K(au, ax) = a-1 K(u, x) for all real a > 0.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

1975-12-01

How to Cite

Duggal, B. P. (1975). A Note on an Inequality of Schur. The Journal of the Indian Mathematical Society, 39(1-4), 331–336. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/16662

 

References

R. R. GOLDBERG, Convolutions and general transforms on Lp, Duke Math, Jnl. (1960), 251-59.

E. HEWITT AND K. A. Ross, Abstract Harmonic Analysis (I), Springer-Verlag (1965).

R. LARSEN, An Introduction to the Theory of Multipliers, Springer-Verlag (1971).

I. SCHUR. 'Bemerkungen zur Theorie der beschranken Bilinearformen mit unendlich vielen Veranderlichen', J fur de reine und angewandte Mathematik, 140(1911), 1-23.