Partitions with Congruence Conditions
Abstract
Let m be a given natural number and a={a1, a2,..., ar}, 1 < a3<m/2, aj≠at,j≠t and let pa(n) denote the number of partitions of the natural number n into summands congruent to ± aj(mod m), aj∈a. In the present paper convergent series and asymptotic formulae are obtained for pa{n). Also for qa(n), the corresponding partition function with distinct summands, the corresponding results are obtained by the author-they are mentioned here omitting details.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1972 V. V. Subrahmanyasastri
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
E. GEOSSWALD: Some theorems concerning partitions, Trans. Amer. Math. Soc, Vol. 89 (1958), 113-128.
P. HAOIS, JB . A problem on partition with a prime modulus p > 3, Traits. Amer. Math. Soc, Vol. 102 (1962), 30-62.
P. HAGIS, JR. A class of partitions with distinct summands, Trans. Amer. Math. Soc, Vol. 112 (1964), 401-415.
L. K. HUA: On the number of partitions of a number into unequal parts, Trans. Amer. Math. Soc, Vol. 51 (1942), 194-201.
G. H. HAEDY and S. RAMANUJAN: Asymptotic formulae in combinatory analysis, Proc London Math. Soc, 2nd series, Vol. 17 (1918), 75-115.
S. ISEKI: A partition function with some congruence conditions, Amer. J. Math., Vol. 81 (1959), 939-961.
S. ISEKI: Partitions in certain arithmetic progressions, Amer. J. Math., Vol. 83 (1961), 243-264.
J. LEHNEB: A partition function connected with modulus five, Duke Math. J., Vol. 8 (1941), 631-655.
H. PETEBSSON: t)ber Partitionen probleme in Verbindung mit potenzresten nach einem Primzahlmodul, Math. Zeit., Vol. 66 (1956), 241-68.
H. PETEBSSOK: t)ber Modulfunktionen und Partitionenprobleme, Abhandlungen Deutsche Akademie Wissenchaften Berlin, Kl Math. Allg. Nat. (1954), No. 2.
H. PETEBSSON: Uber arithmetischen Eigen^chaften eines systems multiplikativer Modulfunktionen von Primzahlstufe, Acta Mathematika, Vol. 95 (1956), 57-110.
H. RADEMAOHEB: On the partition function p(n), Proc. London Math. Soc, 2nd series, Vol. 43 (1937), 242-254.
H. RADEMAOHEB: The Fourier coefficients of modular invariant J(T), Amer. J. Math., Vol. 60 (1938), 501-512.