Some formulae Involving Jacobi Polynomials
Abstract
The object of the present paper is to establish certain finite summation formulae for the Lauricella's hypergeometric function FA and to derive some generating functions for the Jacobi polynomials by specializing the parameters in FA. Most of the results obtained are believed to be new.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1972 P. C. Munot, R. K. Saxena
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
L. CARLITZ: A note on Laguerre polynomials, Michigan Math. Jour., (i960), 219-223.
L. CARLITZ: On Jacobi polynomials, Boll. Un. Mat. Ital. 11 (1956), 371-381.
A. ERDELYI et al.: Tables of integral transforms, Vol. I, McGraw-Hill, New York, (1954).
R. N. JAIN: The confluent hypergeometric function of three variables, Proc. Nat. Acad. Sci., India, 36 (1966), 395-408.
E. FELDHEIM: Relations entre les polynomes de Jacobi, Laguerre et Hermite, Acta Math. Vol. 74 (1941), 117-138.
H. L. MANOCHA and B. L. SHARMA: Summation of infinite series, Jour. Austral. Math. Soc., 6(1966), 476.
P. C. MXTNOT: On Jacobi polynomials, Proc. Cambridge Phil. Soc, 65 (1966), 691-695.
E. D. RAINVILLE: Special functions, Macmillan, New York, (1963).
L. J. SLATER: Confluent hypergeometric functions, Cambrige Univ. Press, (I960).
L. J. SLATER: Generalized hypergeometric functions, Cambridge Univ. Press, (1966).