Some formulae Involving Jacobi Polynomials

Jump To References Section

Authors

  • University of Jodhpur, Jodhpur ,IN
  • University of Jodhpur, Jodhpur ,IN

Abstract

The object of the present paper is to establish certain finite summation formulae for the Lauricella's hypergeometric function FA and to derive some generating functions for the Jacobi polynomials by specializing the parameters in FA. Most of the results obtained are believed to be new.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

1972-12-01

How to Cite

Munot, P. C., & Saxena, R. K. (1972). Some formulae Involving Jacobi Polynomials. The Journal of the Indian Mathematical Society, 36(3-4), 243–253. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/16667

 

References

L. CARLITZ: A note on Laguerre polynomials, Michigan Math. Jour., (i960), 219-223.

L. CARLITZ: On Jacobi polynomials, Boll. Un. Mat. Ital. 11 (1956), 371-381.

A. ERDELYI et al.: Tables of integral transforms, Vol. I, McGraw-Hill, New York, (1954).

R. N. JAIN: The confluent hypergeometric function of three variables, Proc. Nat. Acad. Sci., India, 36 (1966), 395-408.

E. FELDHEIM: Relations entre les polynomes de Jacobi, Laguerre et Hermite, Acta Math. Vol. 74 (1941), 117-138.

H. L. MANOCHA and B. L. SHARMA: Summation of infinite series, Jour. Austral. Math. Soc., 6(1966), 476.

P. C. MXTNOT: On Jacobi polynomials, Proc. Cambridge Phil. Soc, 65 (1966), 691-695.

E. D. RAINVILLE: Special functions, Macmillan, New York, (1963).

L. J. SLATER: Confluent hypergeometric functions, Cambrige Univ. Press, (I960).

L. J. SLATER: Generalized hypergeometric functions, Cambridge Univ. Press, (1966).