Isotopy of Links in Codimension Two

Jump To References Section

Authors

  • Institute for Advanced Study, Princeton ,US

Abstract

Two DISTINCT notions of "isotopy" are commonly used to compare embeddings of a space X in another space Y. The main purpose of this paper is to study these relations, and how they differ, in the simplest interesting case: Y= some Euclidean space and X= a disjoint collection of spheres (in other words, the theory of links).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

1972-12-01

How to Cite

Rolfsen, D. (1972). Isotopy of Links in Codimension Two. The Journal of the Indian Mathematical Society, 36(3-4), 263–278. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/16669

 

References

R. H. Fox and J. MILHOB : Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math., 3 (1966), 257-267.

J. F. P. HUDSON : Extending piecewise-linear isotopies, Proc. Lond. Math. Soc. 16(1966), 651-668.

M. KERVAIRE : Les noeuds de dimensions superieurs, Bull. Soc. Math. France, 93(1965), 225-271.

M. KERVAIRE and J. MILNOR: On 2-spheres in 4-manifolds, Proc. Nat. Acad. Set., U.S.A., 47(1961), 1651-1657.

J. LEVINE : Knot cobordism groups in eodimension two, Covimentarii Math. Helv. 44(1969), 229-44.

S. J. MILNOR : Isotopy of links, Alg. Geom. andTopol. in honor of S. Lefschetz, Princeton, (1957), 280-306.

D. ROUSKN : Some counterexamples in link theory, to appear.

E. C. ZEEMAN : Seminars in combinatorial topology, I.H.E.S, (1963-1966) (mimeo.)