Isotopy of Links in Codimension Two
Abstract
Two DISTINCT notions of "isotopy" are commonly used to compare embeddings of a space X in another space Y. The main purpose of this paper is to study these relations, and how they differ, in the simplest interesting case: Y= some Euclidean space and X= a disjoint collection of spheres (in other words, the theory of links).Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1972 Dale Rolfsen
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
R. H. Fox and J. MILHOB : Singularities of 2-spheres in 4-space and cobordism of knots, Osaka J. Math., 3 (1966), 257-267.
J. F. P. HUDSON : Extending piecewise-linear isotopies, Proc. Lond. Math. Soc. 16(1966), 651-668.
M. KERVAIRE : Les noeuds de dimensions superieurs, Bull. Soc. Math. France, 93(1965), 225-271.
M. KERVAIRE and J. MILNOR: On 2-spheres in 4-manifolds, Proc. Nat. Acad. Set., U.S.A., 47(1961), 1651-1657.
J. LEVINE : Knot cobordism groups in eodimension two, Covimentarii Math. Helv. 44(1969), 229-44.
S. J. MILNOR : Isotopy of links, Alg. Geom. andTopol. in honor of S. Lefschetz, Princeton, (1957), 280-306.
D. ROUSKN : Some counterexamples in link theory, to appear.
E. C. ZEEMAN : Seminars in combinatorial topology, I.H.E.S, (1963-1966) (mimeo.)