A Tauberian Theorem for the Generalised Abel Method of Summability-I
Abstract
This method was introduced independently by A. Amir Jakimovski ([2], p. 374) and C.T. Rajagopal ([8], p. 93). It was discussed in detail by D. Borwein [4]. In the sequence to function transformation method (Aα) if we put α = 0, we get the familiar Abel method (A0) or {A).Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1972 P. A. Jeyarajan
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
A. AMIS JAKIMOVSKI: On a converse of Abel's Theorem, Proc. Amer. Math. Soc, Vol. 3 (1952), 244-56.
A. AMIR JAKIMOVSKI: Some relations between the methods of summability of Abel, Borel, Cesaro, Holder and Hausdorff, Journal a"Analyse Mathematique, Vol. 3 (1953-54), 346-81.
R. P. BOAS : Entire functions, New York, (1954).
D. BOBWEIN : On a scale of Abel-Type summability methods, Proc. Cambridge Phil. Soc, Vol. 53 (1957), 318-22.
L. S. BOSANQTJET: Note on convergence and summability factors (II), Proc. Lond. Math. Soc. (2), Vol. 50 (1949), 295-304.
G. H. HARDY : Divergent Series, Oxford, (1949).
W. B. JITRKAT : Ein funktionentheoretischer Beweis fur 0Taubersatze bei Potenzreihen, Archiv der Mathematik, Vol. 7 (1956), 122-25.
G. T. RAJAGOPAL: Theorems on the product of two summability methods with applications, Jour. Indian Math. Soc. Vol. 18 (1954), 89-105.
R. SCHMIDT : Ober divergente Folgen und lineare Mittelbildungen, Math. Zeit. Vol. 22 (1925), 89-152.
E. C. TITCHMARSH: The Theory of Functions, Oxford, (1952).