Radius of Convexity of a Class of Univalent Functions
Abstract
Let S denote the class of functions/(z) regular and univalent inE{z:|z|<1}, normalized so that f(0) = 0,f'(0) = 1.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1972 R. S. Gupta
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
T. H. MACGREGOB : Topics in the theory of schlicht functions, Doctoral dissertation, University of Pennsylvania, (1961).
K. NOSHIBO : On the theory of schlicht functions. J. Fac. Sci. Hokkaido Univ. ser. 1, Vol. 2 (1934-1935), 29-155.
M. S. ROBBBTSON : Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc, Vol. 16 (1963), 236-253.
S. Y. TBIMBLB : The convex sum of convex functions, Math. Zeit., Band 109, Heft 2 (1969) 112-114.
V. A. ZMOROVIC : On the radius of convexity of starlike functions of order a regular in |z I < 1 and in 0 < I z I < 1 (Russian), Mat. Sbornik (N. S.), 68(110) (1965), 518-526.