Radius of Convexity of a Class of Univalent Functions

Jump To References Section

Authors

  • Department of Mathematics, Punjabi University, Patiala ,IN

Abstract

Let S denote the class of functions/(z) regular and univalent inE{z:|z|<1}, normalized so that f(0) = 0,f'(0) = 1.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

1972-12-01

How to Cite

Gupta, R. S. (1972). Radius of Convexity of a Class of Univalent Functions. The Journal of the Indian Mathematical Society, 36(3-4), 291–296. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/16671

 

References

T. H. MACGREGOB : Topics in the theory of schlicht functions, Doctoral dissertation, University of Pennsylvania, (1961).

K. NOSHIBO : On the theory of schlicht functions. J. Fac. Sci. Hokkaido Univ. ser. 1, Vol. 2 (1934-1935), 29-155.

M. S. ROBBBTSON : Extremal problems for analytic functions with positive real part and applications, Trans. Amer. Math. Soc, Vol. 16 (1963), 236-253.

S. Y. TBIMBLB : The convex sum of convex functions, Math. Zeit., Band 109, Heft 2 (1969) 112-114.

V. A. ZMOROVIC : On the radius of convexity of starlike functions of order a regular in |z I < 1 and in 0 < I z I < 1 (Russian), Mat. Sbornik (N. S.), 68(110) (1965), 518-526.