Application of E-Operator to Evaluate a Definite Integral and its Application in Heat Conduction
Abstract
This paper deals with the evaluation of a definite integral (involving Fox's .ff-function, generalized hypergeometric function and associated Legendre function using the finite difference operator E) with the object of utilizing the same in obtaining the solution of a problem on heat conduction in a non-homogeneous bar.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1972 F. Singh, R. C. Varma
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
BATEMAN: Tables of integral transforms, Vol. II, (1954).
B. L. J. BEAAKSMA : Asymptotic expansions and analytic continuations for a class of Barnes integrals, Compositio Math. 15(1963), 239-341.
S. D. BAJPAI : An expansion formula for Meijer's G-function, Proc. Nat. Inst. Sci. India, Vol. 35 (1969).
S. D. BAJPAI : Meijer's (β-function and the temperature in a non-homogeneous bar, Proc. Indian Acad. Sci. Vol. 70 (1969), 99-101.
R. V. CHUBOHIIIL : Fourier series and boundary value problems, McGraw-Hill, New York (1942).
H. S. CAESLAVT : Introduction to the theory of Fourier series and integrals, Dover, 3rd revised edition.
C. Fox : The O- and Zβ-functions as symmetrical Fourier kernels, Trans. Amer. Math. Soc, 98 (1961), 395-429.
L. M. MILNE-THOMSON : The calculus of finite differences, MacMillan, London (1933).
E. T. WHITTAKBB and G. N. WATSON : A course of modern analysis, Cambridge (1952).