Λ(α)-Bases and Nuclear Spaces

Jump To References Section

Authors

  • Mathematics Department, Clarkson College of Technology, Potsdam, N. Y. 13676 ,US
  • Department of Mathematics, University of Michigan, Ann Arbor, MI 48104 ,US

Abstract

IN A STUDY of the properties of bases in nuclear Frechet spaces, Dynin and Mitiagin [5] proved that in such spaces every Schauder basis is an absolute basis; another proof of this interesting result was given by Mitiagin [7]. Replacing the sequence space l1 in the definition of nuclear maps by the nuclear sequence space Λ(α) of power series the second author initiated, in [10], a study of Λ(α)- nuclear spaces and this study is presented in greater depth in a recent paper of the authors [3]. In this paper we introduce the notion of Λ(α)-basis in locally convex spaces.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

1972-12-01

How to Cite

Dubinsky, E. D., & Ramanujan, M. S. (1972). Λ(α)-Bases and Nuclear Spaces. The Journal of the Indian Mathematical Society, 36(3-4), 333–345. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/16676

 

References

C. BESSAGA, A. PELOZYNSKI and S. ROLEWIOZ : On diametral approximative dimension and linear homogeneity of J'-spaces, Bull. Acad. Polon. Sci. 9(1961), 677-683.

E D DUBINSKY : A remark on a paper by M. S. Ramanujan, Math. Ann. 190 (1971), 231-232.

E D DUBINSKY and M. S. RAMANUJAN : On A-nuclearity Mem. Amer. Math. Soc. 128 (1972), 101

E D DUBINSKY and J. R. RETHERFOBD : Schauder bases and Kothe sequence spaces, Trans. Amer. Math. Soc. 130 (1968), 265-280.

A. S. DYNIN and B. S. MITIAGIN : Criterion for nuclearity in terms of approximative dimension, Bull. Acad. Polon. Sci. 8 (1960), 535-540.

G. KOTHB : Topohgische lineare Routine, I. Berlin-GottingenHeidelberg (1960).

B. S. MITIAGIN : Approximative dimension and bases in nuclear spaces, Russian Math. Surveys 16 (1961), 59-127.

A. PIETSOH : (.F)-Raume mit absoluter Basis, Studia Math., 26 (1966), 233-238.

A. PIETSCH : Nukleare lokalkonvexe Raume, Berlin (1965).

M. S. RAMANUJAN: Power series spaces A(<*) and associated A(*)nuclearity, Math. Ann. 189 (1970), 161-168.

J. R. RETHERFORD : Bases, basic sequences and reflexivity of linear topological spaces, Math. Ann. 248 (1966), 280-285.

I. SINGER : Bases in Banach spaces, I. Berlin-Heidelberg-New York (1970).