Global Dimension of Algebra of Differential Operators

Jump To References Section

Authors

  • Department of Mathematics, University of Poona, Poona”7 ,IN

Abstract

Let S be a commutative ring with identity and let Ts be an S-module of derivations of S. Let Vs be the algebra of differential operators of S with respect to Ts as defined in [5]. The object of this paper is to calculate the global dimension of Vs when S and Ts are resticted suitably.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

1974-12-01

How to Cite

Chiplunkar, A. V. (1974). Global Dimension of Algebra of Differential Operators. The Journal of the Indian Mathematical Society, 38(1-4), 1–17. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/16677

 

References

H. CARTAN AND S. EILENBERG, Homological Algebra, Princeton University Press, 1956.

S. EILENBERG, A. ROSENBERG, D. ZELINSKY, On the dimension of modules and algebras VIII, Ncgoya Math. Jr. 12 (1957) p. 71-93.

N. S. GOPALAKRISHNAN, On some filtered rings, Proc. bid. Acad. Sci. 56(1962), p. 148-154.

N. S. GOPALAKRISHNAN, AND R. SRIDHARAN, Homological dimension of Ore extensions, Pacific Jr. Math. 19(1966) p. 67-75.

G. HOCHSCHILD, B. KOSTANT, A. ROSENBERG, Differential forms on regular affine algebras, Trans. Am. Math. Soc. 102 (1962) p. 383-408.

I. KAPLANSKY, Commutative Rings. Lecture Notes. Queen Mary College, London.

O. ORE, Theory of non-commutative polynomials, Ann. of Math. 34 (1933) p. 480-508.

G. S. RINHART, Note on global dimension of a certain ring Proc. Am. Math. Soc. 13(1962). p. 341-346.

A ROY, A note on filtered rings, Arch. der. Math. 16 (1965) p. All-All.