Global Dimension of Algebra of Differential Operators
Abstract
Let S be a commutative ring with identity and let Ts be an S-module of derivations of S. Let Vs be the algebra of differential operators of S with respect to Ts as defined in [5]. The object of this paper is to calculate the global dimension of Vs when S and Ts are resticted suitably.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 1974 A. V. Chiplunkar
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
H. CARTAN AND S. EILENBERG, Homological Algebra, Princeton University Press, 1956.
S. EILENBERG, A. ROSENBERG, D. ZELINSKY, On the dimension of modules and algebras VIII, Ncgoya Math. Jr. 12 (1957) p. 71-93.
N. S. GOPALAKRISHNAN, On some filtered rings, Proc. bid. Acad. Sci. 56(1962), p. 148-154.
N. S. GOPALAKRISHNAN, AND R. SRIDHARAN, Homological dimension of Ore extensions, Pacific Jr. Math. 19(1966) p. 67-75.
G. HOCHSCHILD, B. KOSTANT, A. ROSENBERG, Differential forms on regular affine algebras, Trans. Am. Math. Soc. 102 (1962) p. 383-408.
I. KAPLANSKY, Commutative Rings. Lecture Notes. Queen Mary College, London.
O. ORE, Theory of non-commutative polynomials, Ann. of Math. 34 (1933) p. 480-508.
G. S. RINHART, Note on global dimension of a certain ring Proc. Am. Math. Soc. 13(1962). p. 341-346.
A ROY, A note on filtered rings, Arch. der. Math. 16 (1965) p. All-All.