In Homogeneous Approximation in the Field of formal Power Series
Jump To References Section
DOI:
https://doi.org/10.18311/jims/1968/16784Abstract
A theorem of Khintchine (see e.g. Cassels [2]) states the following: For all pairs of integers m > 0, n > 0 there is a constant Γm, n > 0 with the following property. Let Lj(X) (1 < j < n) be any real homogeneous linear forms in m variables (x1 , . . , xm) = X.Downloads
Download data is not yet available.
Metrics
Metrics Loading ...
Downloads
Published
1968-06-01
How to Cite
Aggarwal, S. K. (1968). In Homogeneous Approximation in the Field of formal Power Series. The Journal of the Indian Mathematical Society, 32(1-2), 403–419. https://doi.org/10.18311/jims/1968/16784
Issue
Section
Articles
License
Copyright (c) 1968 Satish K. Aggarwal
This work is licensed under a Creative Commons Attribution 4.0 International License.