On the Existence of Free Action of S3 on Certain Finitistic Mod P Cohomology Spaces
Keywords:
Free Action, Finitistic Space, Leray-Serre Spectral Sequence, Mod p Cohomology Algebra.Abstract
In this paper we investigate the possibility of free actions of G = S3 on a finitistic mod p cohomology (sphere, real projective space or lens space) X. If X is a mod 2 cohomology k-sphere, then it is observed that G can act freely on X only if k = 4n − 1. In this case, with the canonical free G-action on S4m−1, we prove that there exist no equivariant map from S4n−1 to X if m > n. If X is a mod 2 cohomology real projective space or mod p cohomology lens space, p an odd prime then we prove that G can not act freely on X.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2015 Jaspreet Kaur, Hemant Kumar Singh
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
A. Adem and W. Browder, The Free Rank of Symmetry of (S n) k, Inventiones Math. 92 (1988), 431–440.
A. Adem and E. Yalcin, On some examples of group actions and group extensions, Journal of group theory, 2 (1) (2006), 69–79.
C. Biasi and D. Mattos, A Borsuk-Ulam theorem for compact Lie group actions, Bull. Braz. Math. Soc., New series, 37 (2006), 127–137.
G. E. Bredon, Introduction to compact transformation groups, Academic press, 1972.
G. E. Bredon, Topology and Geometry, Springer-verlag, 1993.
B. Conrad, Extending free circle actions on spheres to S 3 actions, Proc. Amer. Math. Soc., 27 (1) (1971) 168–174.
J. F. Davis and R. J. Milgram, A survey of the spherical space form problem, Harwood 1984.
Satya Deo and H. S. Tripathi, Compact Lie group actions on finitistic spaces, Topology 21 (4) (1982), 393-399.
T. Tom Dieck, Transformation groups, de Gruyter Studies in Math., Walter de Gruyter, Berlin, 8, 1987.
D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math., 87 (4) (1965), 840–856.
I. Madsen, C.B. Thomas, and C.T.C Wall, The topological spherical space form problem II, Topology 15 (1978), 375–382.
T. Macko and C. Wegner, On the classification of fake lens spaces, Forum Mathematicum, 23 (5) (2010), 1053–1091.
J. McCleary, A user's guide to spectral sequences, Cambridge University Press, II edition, 2001.
J. Milnor, Groups which act on Sn without fixed points, Amer. J. Math., 79 (1957), 623–630.
J. Montaldi and J. Pablo-Ortega, Notes on lifting group actions, www.manchester.ac.uk (mims, eprints), (2008).
G. Mukherjee Ed., Transformation groups, symplectic torus actions and toric manifolds, Hindustan Book Agency, New Delhi, 2005.
E. H. Spanier, Algebraic topology, Springer-verlag, New York, 1966.
R. G. Swan, Periodic resolutions for finite groups, Ann. of Math. 72(1960), 267-291.
C. T. C. Wall, Surgery on compact manifolds, (Mathematical surveys and monographs) American Mathematical Society, Vol. 69, 2nd ed. 1999.