On the Existence of Free Action of S3 on Certain Finitistic Mod P Cohomology Spaces

Jump To References Section

Authors

  • Department of Mathematics, University of Delhi, Delhi - 110007 ,IN
  • Department of Mathematics, University of Delhi, Delhi - 110007 ,IN

Keywords:

Free Action, Finitistic Space, Leray-Serre Spectral Sequence, Mod p Cohomology Algebra.
Algebra

Abstract

In this paper we investigate the possibility of free actions of G = S3 on a finitistic mod p cohomology (sphere, real projective space or lens space) X. If X is a mod 2 cohomology k-sphere, then it is observed that G can act freely on X only if k = 4n − 1. In this case, with the canonical free G-action on S4m−1, we prove that there exist no equivariant map from S4n−1 to X if m > n. If X is a mod 2 cohomology real projective space or mod p cohomology lens space, p an odd prime then we prove that G can not act freely on X.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2015-12-01

How to Cite

Kaur, J., & Singh, H. K. (2015). On the Existence of Free Action of S<sup>3</sup> on Certain Finitistic Mod P Cohomology Spaces. The Journal of the Indian Mathematical Society, 82(3-4), 97–106. Retrieved from https://informaticsjournals.co.in/index.php/jims/article/view/1685

 

References

A. Adem and W. Browder, The Free Rank of Symmetry of (S n) k, Inventiones Math. 92 (1988), 431–440.

A. Adem and E. Yalcin, On some examples of group actions and group extensions, Journal of group theory, 2 (1) (2006), 69–79.

C. Biasi and D. Mattos, A Borsuk-Ulam theorem for compact Lie group actions, Bull. Braz. Math. Soc., New series, 37 (2006), 127–137.

G. E. Bredon, Introduction to compact transformation groups, Academic press, 1972.

G. E. Bredon, Topology and Geometry, Springer-verlag, 1993.

B. Conrad, Extending free circle actions on spheres to S 3 actions, Proc. Amer. Math. Soc., 27 (1) (1971) 168–174.

J. F. Davis and R. J. Milgram, A survey of the spherical space form problem, Harwood 1984.

Satya Deo and H. S. Tripathi, Compact Lie group actions on finitistic spaces, Topology 21 (4) (1982), 393-399.

T. Tom Dieck, Transformation groups, de Gruyter Studies in Math., Walter de Gruyter, Berlin, 8, 1987.

D. H. Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math., 87 (4) (1965), 840–856.

I. Madsen, C.B. Thomas, and C.T.C Wall, The topological spherical space form problem II, Topology 15 (1978), 375–382.

T. Macko and C. Wegner, On the classification of fake lens spaces, Forum Mathematicum, 23 (5) (2010), 1053–1091.

J. McCleary, A user's guide to spectral sequences, Cambridge University Press, II edition, 2001.

J. Milnor, Groups which act on Sn without fixed points, Amer. J. Math., 79 (1957), 623–630.

J. Montaldi and J. Pablo-Ortega, Notes on lifting group actions, www.manchester.ac.uk (mims, eprints), (2008).

G. Mukherjee Ed., Transformation groups, symplectic torus actions and toric manifolds, Hindustan Book Agency, New Delhi, 2005.

E. H. Spanier, Algebraic topology, Springer-verlag, New York, 1966.

R. G. Swan, Periodic resolutions for finite groups, Ann. of Math. 72(1960), 267-291.

C. T. C. Wall, Surgery on compact manifolds, (Mathematical surveys and monographs) American Mathematical Society, Vol. 69, 2nd ed. 1999.