Asymptotic Behaviour of Distributional Mexican Hat Wavelet Transform

Jump To References Section

Authors

  • Department of Mathematics, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida ,IN
  • Department of Mathematics, Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida ,IN
  • ,SA

DOI:

https://doi.org/10.18311/jims/2019/20803

Keywords:

Distribution Space, Wavelet Transform, Mexican Hat Wavelet, Weierstrass Transform, Asymptotic Behaviour
Primary 44A15, 42C15 Secondary 46F12

Abstract

Theory of Weierstrass transform is ventured to derive properties of the Mexican hat wavelet transform by Pathak et al. [3]. In this paper, distributional Mexican hat wavelet transform is studied and an asymptotic behaviour for the same is established. Further, tauberian result of Mexican hat wavelet transform is derived.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2018-12-12

How to Cite

Mala, A., Singh, A., & Saxena, D. (2018). Asymptotic Behaviour of Distributional Mexican Hat Wavelet Transform. The Journal of the Indian Mathematical Society, 86(1-2), 58–66. https://doi.org/10.18311/jims/2019/20803
Received 2018-04-04
Accepted 2018-06-28
Published 2018-12-12

 

References

C. K. Chui, An Introduction to Wavelets, Academic Press, New York (1992).

R. S. Pathak, The Wavelet Transform, Atlantis Press World Scientific, Amsterdam, Paris, 2009.

R. S. Pathak and Abhishek Singh, Mexican hat Wavelet Transform of Distributions, Integral Transforms Spec Funct., 27(6) (2016), 468-483.

R. S. Pathak and Abhishek Singh, Wavelet transform of generalized functions in K"²{Mp} spaces, Proc. Math. Sci., 126(2) (2016), 213–226.

R. S. Pathak and Abhishek Singh, Distributional Wavelet Transform, Proc. Nat. Acad.Sci., Sec. A, 86(2) (2016), 273–277.

R. S. Pathak and Abhishek Singh, Wavelet Transform of Beurling-Bjorck type Ultra-distributions, Rend. Sem. Mat. Univ. Padova, 137(1) (2017), 211-222.

R. S. Pathak, Integral Transforms of Generalised Functions and their Applications, Gordon and Breach Science Publishers, Amsterdam; 1997.

S. Pilipovi´c, On the S-Asymptotics of Tempered and K"²1-distributions, Parts I and II, Rev. Res. Sci. 15 (1) (1985), 47-58.

S. Pilipovi´c, On the asymptotic behaviour of the distributional Weierstrass transform, Appl. Anal., 25(1987), 171-179.

S. Pilipovi´c, B. Stankovi´c, S-asymptotic of a distribution, PLISKA Stud. Math. Bulg., 10 (1989), 147-156.

J. Peetre, On the value of a distributions at a point, Port. Math., 27(1968), 149-159.

E. Seneta, Regularly Varying functions, Lect. Not. Math. Springer, Berlin-Heidelberg-Newyork, 508 (1976).

A. H. Zemanian, Generalized Integral Transformations, Interscience Publishers, New York (1996).