Asymptotic Behaviour of Distributional Mexican Hat Wavelet Transform
DOI:
https://doi.org/10.18311/jims/2019/20803Keywords:
Distribution Space, Wavelet Transform, Mexican Hat Wavelet, Weierstrass Transform, Asymptotic BehaviourAbstract
Theory of Weierstrass transform is ventured to derive properties of the Mexican hat wavelet transform by Pathak et al. [3]. In this paper, distributional Mexican hat wavelet transform is studied and an asymptotic behaviour for the same is established. Further, tauberian result of Mexican hat wavelet transform is derived.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Anshu Mala, Abhishek Singh, Deepali Saxena
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2018-06-28
Published 2018-12-12
References
C. K. Chui, An Introduction to Wavelets, Academic Press, New York (1992).
R. S. Pathak, The Wavelet Transform, Atlantis Press World Scientific, Amsterdam, Paris, 2009.
R. S. Pathak and Abhishek Singh, Mexican hat Wavelet Transform of Distributions, Integral Transforms Spec Funct., 27(6) (2016), 468-483.
R. S. Pathak and Abhishek Singh, Wavelet transform of generalized functions in K"²{Mp} spaces, Proc. Math. Sci., 126(2) (2016), 213–226.
R. S. Pathak and Abhishek Singh, Distributional Wavelet Transform, Proc. Nat. Acad.Sci., Sec. A, 86(2) (2016), 273–277.
R. S. Pathak and Abhishek Singh, Wavelet Transform of Beurling-Bjorck type Ultra-distributions, Rend. Sem. Mat. Univ. Padova, 137(1) (2017), 211-222.
R. S. Pathak, Integral Transforms of Generalised Functions and their Applications, Gordon and Breach Science Publishers, Amsterdam; 1997.
S. Pilipovi´c, On the S-Asymptotics of Tempered and K"²1-distributions, Parts I and II, Rev. Res. Sci. 15 (1) (1985), 47-58.
S. Pilipovi´c, On the asymptotic behaviour of the distributional Weierstrass transform, Appl. Anal., 25(1987), 171-179.
S. Pilipovi´c, B. Stankovi´c, S-asymptotic of a distribution, PLISKA Stud. Math. Bulg., 10 (1989), 147-156.
J. Peetre, On the value of a distributions at a point, Port. Math., 27(1968), 149-159.
E. Seneta, Regularly Varying functions, Lect. Not. Math. Springer, Berlin-Heidelberg-Newyork, 508 (1976).
A. H. Zemanian, Generalized Integral Transformations, Interscience Publishers, New York (1996).