Elliptic Partial Differential Equation Involving a Singularity and a Radon Measure

Jump To References Section

Authors

  • ,IN
  • ,IN
  • ,IN

DOI:

https://doi.org/10.18311/jims/2019/20912

Keywords:

Elliptic PDE, Sobolev Space, Schauder Fixed Point Theorem
35J35, 35J60

Abstract

The aim of this paper is to prove the existence of solution for a partial differential equation involving a singularity with a general nonnegative, Radon measure μ as its nonhomogenous term which is given as

−Δu = f(x)h(u) + μ in Ω,

u = 0 on ∂Ω,

u > 0 on Ω,

where Ω is a bounded domain of RN, f is a nonnegative function over Ω.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2018-12-12

How to Cite

Panda, A., Ghosh, S., & Choudhuri, D. (2018). Elliptic Partial Differential Equation Involving a Singularity and a Radon Measure. The Journal of the Indian Mathematical Society, 86(1-2), 95–117. https://doi.org/10.18311/jims/2019/20912
Received 2018-04-14
Accepted 2023-01-30
Published 2018-12-12

 

References

D. Arcoya, J. Carmona, T. Leonori, P. J. Martinez-Aparicio, L. Orsina and F. Petitta, Existence and nonexistence of solutions for singular quadratic quasilinear equations, Journal of Differential Equations, 246 (2009), 4006-4042.

P. Benilan, L. Boccardo, T. Gallouet, R. Gariepy, M. Pierre and J. L. Vazquez, An L1 theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa, 22 (1995), 241-273.

M. Bhakta and M. Marcus, Reduced limit for semilinear boundary value problems with measure data, J. Differential Equations, 256 (2014), 2691-2710.

L. Boccardo and L. Orsina, Semilinear elliptic equations with singular nonlinearities, Calc. Var., 37 (2010), 363-380.

H. Brezis and X. Cabre, Some simple nonlinear PDE's without solutions, Bollettino dell'Unione Matematica Italiana, Serie 8, 1-B (1998), 223-262.

A. Canino, Minimax methods for singular elliptic equations with an application to a jumping problem, Journal of Differential Equations, 221(1) (2006), 210-223.

A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations, Journal of Convex Analysis, 11 (2004), 147-162.

A. Canino, M. Grandinetti and B. Sciunzi, Symmetry of solutions of some semilinear elliptic equations with singular nonlinearities, Journal of Differential Equations, 255 (2013), 4437-4447.

L. M. De Cave and F. Oliva, Elliptic equations with general singular lower order term and measure data, Nonlinear Analysis, 128 (2015), 391-411.

L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (2010).

G. B. Folland, Real analysis (Modern techniques and their applications), Second edition, A Wiley-Interscience publication, 2nd Edition.

J. A. Gatica, V. Oliker and P. Waltman, Singular nonlinear boundary-value problems for second-order ordinary differential equations, Journal of Differential Equations, 79(1) (1989), 62-78.

D. Giachetti, P. J. Martinez-Aparicio and F. Murat, A semilinear elliptic equation with a mild singularity at u = 0: Existence and homogenization, Journal de Mathematiques Pures et Appliquees, 107 (2017), 41-77.

D. Giachetti, P. J. Martinez-Aparicio and F. Murat, Definition, existence, stability and uniqueness of the solution to a semilinear elliptic problem with a strong singularity at u = 0, Annali della Scuola Normale Superiore di Pisa, 2017.

A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem, Proc. Amer. Math. Soc., 111(3) (1991), 721-730.

J. Leray and J. L. Lions, Quelques resultats de Visik sur les problemes elliptiques non lineaires par les methodes de Minty-Browder, Bulletin de la S.M.F., 93 (1965), 97-107.

M. Marcus and L. Veron, Nonlinear second order elliptic equations involving measures, de Gruyter Series in Nonlinear Analysis and Applications, 21 (2013).

M. Montenegro and A. C. Ponce, The sub-supersolution method for weak solutions, Proc. Amer. Math. Soc., 136(7) (2008), 2429-2438.

F. Oliva and F. Petitta, Finite and infinite energy solutions of singular elliptic problems: Existence and Uniqueness, Journal of Differential Equations, 264 (2018), 311-340.

F. Oliva and F. Petitta, On singular elliptic equations with measure sources, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 289-308.

G. Stampacchia, Le probleme de Dirichlet pour lesequations elliptiques du second ordre a coefficientes discontinus, Annales de l'institut Fourier, 15(1) (1965), 189-257.

Y. Sun and D. Zhang, The role of the power 3 for elliptic equations with negative exponents, Calculus of Variations, 49 (2014), 909-922.

S. Taliaferro, A nonlinear singular boundary value problem, Nonlinear Analysis, Theory, Methods & Applications, 3(6) (1979), 897-904.