Jordan Regular Generators of General Linear Groups
DOI:
https://doi.org/10.18311/jims/2018/20971Keywords:
Jordan Regular Units, General Linear GroupsAbstract
In this article Jordan regular units have been introduced. In particular, it is proved that for n ≥ 2, the general linear group GL(2; F2n) can be generated by Jordan regular units. Further, presentations of GL(2, F4); GL(2, F8); GL(2, F16) and GL(2, F32) have been obtained having Jordan regular units as generators.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Meena Sahai, R. K. Sharma, Parvesh Kumari
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2018-04-25
Published 2018-06-01
References
A. Karrass, D. Solitar and W. Magnus, Combinatorial Group Theory, Dover Publications, INC, 1975.
G. Chiaselotti, Some presentations for the special linear groups on finite fields, Ann. Mat. Pura Appl., 180(2001), 359-372.
H. S. M. Coxeter and W. O. J. Mosser, Generators and Relations for Discrete Groups, Springer-Verlag, 1980.
Joseph J. Rotman, An Introduction to the theory of groups, fourth ed., Graduate Texts in Mathematics, vol. 148, Springer-Verlag, New York, 1995.
Michio Suzuki, Group Theory vol.1 , Gendai Sugaku [Modern Mathematics], vol.18, Iwanami Shoten, Tokyo, 1977.
Parvesh Kumari, R. K. Sharma and Meena Sahai, Jordan Regular Units in Rings and Group Rings, Pre-Print.
Pramod Kanwar, R. K. Sharma and Pooja Yadav, Lie Regular Generators of General Linear Groups II, International Electronic Journal of Algebra, 13, (2013), 91-108.
R. K. Sharma, Pooja Yadav and Pramod Kanwar, Lie Regular Generators of General Linear Groups, Comm. Algebra, 40(4) (2012), 1304-1315.
T. A. Francis, Presentations of the special and general linear groups, J. Algebra, 169(1994), 943-964.
The GAP groups, GAP-Groups, Algorithms and Programming, Version 4.4,2004, (http://www.gap-system.org).