A Simple Generalization of Euler Numbers and Polynomials
DOI:
https://doi.org/10.18311/jims/2018/20981Keywords:
Euler Numbers, Euler PolynomialsAbstract
In this article, we shall consider a generalization of Euler's numbers and polynomials based on modifying the corresponding generating function. We shall prove some recurrence relations, an explicit formula, and multiplicative properties of the generalized numbers.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Abdul Hassen, Christopher R. Ernst
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2018-04-25
Published 2018-06-01
References
L. Carlitz and R. Scoville, The Sign of the Bernoulli and Euler Numbers, The American Mathematical Monthly, Vol. 80, No. 5 (May, 1973), pp. 548-549
L. J. Mordell, The Sign of the Bernoulli Numbers, The American Mathematical Monthly, Vol. 80, No. 5 (May, 1973), pp. 547-548
H.D. Nguyen and L.C. Cheong, New Convolution Identities for Hypergeometric Bernoulli Polynomials, J. Number Theory 137 (2014), pp. 201-221.
D. C. Vella. Explicit Formula for Bernoulli and Euler Numbers, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 8(1) (2008), #A01
K. J. Wu, Z. W. Sun and H. Pan, Some identities for Bernoulli and Euler polynomials, Fibonacci Quart. 42 (2004), pp. 295- 299.