On Perturbation of Weighted G−Banach Frames in Banach Spaces
DOI:
https://doi.org/10.18311/jims/2020/21297Keywords:
Frame, Banach frame, g−Banach frameAbstract
In the present paper, we study perturbation of weighted g−Banach frames in Banach spaces and obtain perturbation results for weighted g−Banach frames. Also, sufficient conditions for the perturbation of weighted g−Banach frames by positively confined sequence of scalars and uniformly scaled version of a given weighted g−Banach Bessel sequence have been given. Finally, we give a condition under which the sum of finite number of sequences of operators is a weighted g−Banach frame by comparing each of the sequences with another system of weighted g−Banach frames in Banach spaces.Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Ghanshyam Singh Rathore, Tripti Mittal
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2023-01-30
Published 2020-05-15
References
M. R. Abdollahpour, M. H. Faroughi and A. Rahimi, PG−Frames in Banach spaces, Methods of Functional Analysis and Topology, 13(3)(2007), 201–210.
P. Balazs, J. P. Antonie and A. Grybos, Weighted and controlled frames, Inter. J. Wavelets, Multiresolution and Information Processing, 8(1)(2010), 109–132.
I. Bogdanova, P. Vanderghenyst, J. P. Antoine, L. Jacques and M. Morvidone, Stereographic wavelet frames on the sphere, Applied Comput. Harmon. Anal., 19(2005), 223–252.
P. G. Casazza and O. Christensen, Perturbation of operators and applications to frame theory, J. Fourier Anal. Appl., 3(5)(1997), 543–557.
P. G. Casazza and O. Christensen, Frames containing a Riesz basis and preservation of this property under perturbations, SIAM J.Math. Anal., 29(1)(1998), 266–278.
O. Christensen, Frame perturbations, Proc. Amer. Math. Soc. 123(4)(1995), 1217–1220.
O. Christensen, An introduction to Frames and Riesz Bases, Birkhauser, 2003.
I. Daubechies, A. Grossman and Y. Meyer, Painless non-orthogonal expansions, J. Math. Phys., 27(1986), 1271–1283.
R. J. Duffin and A. C. Schaeffer, A class of non-harmonic Fourier series, Trans. Amer. Math. Soc., 72(1952), 341–366.
S. J. Favier and R. A. Zalik, On the stability of frames and Riesz bases, Appl. Comp. Harmon. Anal.,2(2)(1995), 160–173.
H. G. Feichtinger and K. H. Gröchenig, A unified approach to atomic decompositions via integrable group representations, Function spaces and Applications, Lecture Notes in Mathematics, Vol. 1302 (1988), 52-73.
K. H. Gröchenig, Describing functions: Atomic decompositions versus frames, Monatsh. fur Mathematik, 112(1991), 1–41.
G. S. Rathore and Tripti Mittal, On G-Banach frames, Jordan J. Maths. Statistics (JJMS), 12(4)(2019), 498–519.
G. S. Rathore and Tripti Mittal, On Weighted G-Banach frames in Banach Spaces, Poincare J. Anal. Appl. (2(II)), Special Issue (IWWFA-III, Delhi), (2018) 13–26.
L. Vashisht and S. Sharma, On weighted Banach frames, Commun. Math. Appl., 3(3)(2012), 283–292.
D. Walnut, Weyl-Heisenberg Wavelet Expansions: Existence and Stability in Weighted Spaces, Ph.D. Thesis, University of Maryland, College Park, MD, 1989.