Topological Vector Space Valued Measures on Topological Spaces
DOI:
https://doi.org/10.18311/jims/2019/21590Keywords:
vector measures, measure representation of linear operators, Alexandrov's theoremAbstract
If X is a compact Hausdorff space space, E is a complete Hausdorff topological vector space and μ : (C(X),ll.ll) → E a linear continuous exhaustive mapping, we rst give a different proof that there is then a unique reqular, L∞-bounded, exhaustive E-valued Borel measure μ on X such that μ(f) = ∫ fdμ, ∀f ∈ C(X). Then we consider X to be a completely regular Hausdorff space and prove the extension of Alexanderov's theorem: X is a completely regular Hausdorff space and μ : Cb(X) → E a linear, continuos, exhaustive mapping and F is the algebra generated by zero-sets in X. Then there exist a unique nitely additive, exhaustive measure ν : F → E such that (i) ν is L∞-bounded i.e. the absolute convex hull of ν(F) (Γ(ν(F))) is bounded in E; (ii) ν is inner regular by zero-sets and outer regular by positive-sets; (iii) ∫ fdν = µ(f), ∀f ∈ Cb(X).Downloads
Metrics
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Surjit Singh Khurana
This work is licensed under a Creative Commons Attribution 4.0 International License.
Accepted 2019-03-20
Published 2019-08-22
References
Aliprantis, C. D., Burkinshaw, O., Locally solid Riesz spaces, Academic Press, 1978.
Drewnowski, L., Topological rings of sets, continuous set functions, integration I, II, III Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 20(1972), 269-286 (I, II), 439-445(III).
Kalton, N. J., Topologies on Riesz groups and its appliction to measure theory, Proc. Lond. Math. Soc. (3) 28 (1974), 253-273.
Khurana, Surjit Singh, Topologies on spaces of continuous vector-valued functions, Trans Amer. Math. Soc., 241(1978), 195-211.
Khurana, Surjit Singh, Extension and regularity of Group-Valued Baire Measures , Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 22 (1974), 891-895.
Wright, J. D. Maitland, The measure extension problem for vector lattics, Annales de l'institute Fourier, tome 21, No 4 (1971), 65-85
Schaeffer, H. H., Topological Vector spaces, Springer Verlag 1986.
Sentilles, F. D., Bounded continuous functions on completely regular spaces, Trans. Amer. Math. Soc., 168(1972), 311-336.
Thomas, E., Vector Integration, Quaestiones Mathematicae, 35(2012), 391-416.
Wheeler, R. F., Survey of Baire measures and strict topologies,
Expos. Math., 2(1983), 97-190.
Turpin, Ph., Convexite dans les espaces vectoriels topologiques generaux, Diss. Math. 131, Institute of Mathematics, Polish Academy of Sciences, Warsaw, 1976.
Turpin, Ph., Integration par rapport a' une mesurea valeurs dans un espace vectoriel topologique non suppose localement convexe Integration vectorielle et multivoque: actes du Colloque [d']Integration vectorielle et multivoque (Caen, 22 et 23 Mai 1975), (1975), n0. 8, 22 pp.
Varadarajan, V. S., Measures on topological spaces, Amer. Math. Soc. Transl. (2) 48 (1965), 161-228.