Topological Vector Space Valued Measures on Topological Spaces

Jump To References Section

Authors

  • The University of Iowa, Department of Mathematics, Iowa City, IA ,US

DOI:

https://doi.org/10.18311/jims/2019/21590

Keywords:

vector measures, measure representation of linear operators, Alexandrov's theorem
46E10, 28C05, 28C15, 46G10, 28B05.

Abstract

If X is a compact Hausdorff space space, E is a complete Hausdorff topological vector space and μ : (C(X),ll.ll) → E a linear continuous exhaustive mapping, we rst give a different proof that there is then a unique reqular, L∞-bounded, exhaustive E-valued Borel measure μ on X such that μ(f) = ∫ fdμ, ∀f ∈ C(X). Then we consider X to be a completely regular Hausdorff space and prove the extension of Alexanderov's theorem: X is a completely regular Hausdorff space and μ : Cb(X) → E a linear, continuos, exhaustive mapping and F is the algebra generated by zero-sets in X. Then there exist a unique nitely additive, exhaustive measure ν : F → E such that (i) ν is L∞-bounded i.e. the absolute convex hull of ν(F) (Γ(ν(F))) is bounded in E; (ii) ν is inner regular by zero-sets and outer regular by positive-sets; (iii) âˆ« fdν = µ(f), ∀f ∈ Cb(X).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2019-08-22

How to Cite

Singh Khurana, S. (2019). Topological Vector Space Valued Measures on Topological Spaces. The Journal of the Indian Mathematical Society, 86(3-4), 259–271. https://doi.org/10.18311/jims/2019/21590
Received 2018-07-19
Accepted 2019-03-20
Published 2019-08-22

 

References

Aliprantis, C. D., Burkinshaw, O., Locally solid Riesz spaces, Academic Press, 1978.

Drewnowski, L., Topological rings of sets, continuous set functions, integration I, II, III Bull. Acad. Polon. Sci. Ser. Math. Astronom. Phys., 20(1972), 269-286 (I, II), 439-445(III).

Kalton, N. J., Topologies on Riesz groups and its appliction to measure theory, Proc. Lond. Math. Soc. (3) 28 (1974), 253-273.

Khurana, Surjit Singh, Topologies on spaces of continuous vector-valued functions, Trans Amer. Math. Soc., 241(1978), 195-211.

Khurana, Surjit Singh, Extension and regularity of Group-Valued Baire Measures , Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 22 (1974), 891-895.

Wright, J. D. Maitland, The measure extension problem for vector lattics, Annales de l'institute Fourier, tome 21, No 4 (1971), 65-85

Schaeffer, H. H., Topological Vector spaces, Springer Verlag 1986.

Sentilles, F. D., Bounded continuous functions on completely regular spaces, Trans. Amer. Math. Soc., 168(1972), 311-336.

Thomas, E., Vector Integration, Quaestiones Mathematicae, 35(2012), 391-416.

Wheeler, R. F., Survey of Baire measures and strict topologies,

Expos. Math., 2(1983), 97-190.

Turpin, Ph., Convexite dans les espaces vectoriels topologiques generaux, Diss. Math. 131, Institute of Mathematics, Polish Academy of Sciences, Warsaw, 1976.

Turpin, Ph., Integration par rapport a' une mesurea valeurs dans un espace vectoriel topologique non suppose localement convexe Integration vectorielle et multivoque: actes du Colloque [d']Integration vectorielle et multivoque (Caen, 22 et 23 Mai 1975), (1975), n0. 8, 22 pp.

Varadarajan, V. S., Measures on topological spaces, Amer. Math. Soc. Transl. (2) 48 (1965), 161-228.