Ideal Module Amenability of Triangular Banach Algebras

Jump To References Section

Authors

  • Faculty of Mathematics Science and Statistic, University of Birjand, Birjand ,IR

DOI:

https://doi.org/10.18311/jims/2019/21637

Keywords:

Ideal module amenability, Inverse semigroup algebras, Module amenability, Triangular Banach algebras
Primary 46H20, Secondary 46H25, 16E40.

Abstract

Let A and B be unital Banach algebras and M be an unital Banach A,B-module. In this paper we define the concept of the (n)-ideal module amenability of Banach algebras and investigate the relation between the (2n-1)-ideal module amenability of triangular Banach algebra Τ = [A M B] (as a Τ = {[α α] : α ∈u}-module) and (2n - 1)-ideal module amenability of A and B (as an u-module), where u is a (not necessarily unital) Banach algebra such that A, B and M are commutative Banach u-bimodules. Finally, in the case that A = B = M = l1(S) and u = l1(E), for unital and commutative inverse semigroup S with idempotent set E, we show that T as an u-module is (2n - 1)- ideal module amenable while is not module amenable.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Published

2019-08-22

How to Cite

Nasrabadi, E. (2019). Ideal Module Amenability of Triangular Banach Algebras. The Journal of the Indian Mathematical Society, 86(3-4), 272–285. https://doi.org/10.18311/jims/2019/21637
Received 2018-07-25
Accepted 2019-03-18
Published 2019-08-22

 

References

M. Amini, Module amenability for semigroup algebras, Semigroup Forum 69 (2004), 243-254.

M. Amini and B. E. Bagha, Weak Module amenability for semigroup algebras, Semigroup Forum 71 (2005) 18-26.

W. G. Bade, P. C. Curtis and H. G. Dales, Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London. Math. Soc 3.2 (1987), 359-377.

A. Bodaghi, A. Jabbari, n-Weak Module Amenability of Triangular Banach algebras Math. Slovaca 65.3 (2015), 645-666.

B. E. Forrest and L. W. Marcoux, Weak Amenability of Triangular Banach algebras, Tranc. Amer. Math. Soc 345 (2002), 1435-1452.

M. E. Gordji and S. A. R. Hosseiniun, Ideal amenability of Banach algebras on locally compact groups, Proc. Indian Acad. Sc 115 (2005), No. 3, 319-325.

M. E. Gordjiand and T. Yazdanpanah, Derivations into duals of ideals of Banach algebras, Proc. Indian Acad. Sci 114(4) (2004), 399-408 [8] B. E. Johnson, Cohomology in Banach algebras Memoirs Amer. Math. Soc 127 (1972), 96 pp.

B. E. Johnson and M.C. White, A non-weakly amenable augmentation ideal, To appear, (2003).

A. R. Pourabbas and E. Nasrabadi, Weak Module Amenability of Triangular Banach Algebras, Mathematica Slovaca. 61 (2011), 949-958.